• 论文3


    # -*- coding: utf-8 -*-
    import cv2 as cv
    import numpy as np
    from matplotlib import pyplot as plt
    import cv2
    img = cv.imread('C:/Users/Administrator/Desktop/41.png',0)

    f = np.fft.fft2(img)
    #F(u,v)频域变换
    fshift = np.fft.fftshift(f)
    #将低频移动到图像的中心
    fshift_ima=np.abs(fshift)
    #A(u,v)=|F(u,v)|求频幅
    magnitude_spectrum = 20*np.log(np.abs(fshift))
    #拉伸小取对数L(u,v)=log(A(u,v))
    laplacian_image=cv2.Laplacian(img,cv2.CV_64F)


    plt.subplot(221),plt.imshow(magnitude_spectrum, cmap = 'gray')
    plt.title('im_copy_max laplacian_image'), plt.xticks([]), plt.yticks([])
    plt.subplot(222),plt.imshow(laplacian_image, cmap = 'gray')
    plt.title('im_copy_max laplacian_image'), plt.xticks([]), plt.yticks([])

    plt.show()


    ###########想给它一个模板MASK滤波
    #####################################################################
    rows, cols = img.shape
    crow,ccol = rows//2 , cols//2
    im_copy_max=np.zeros([rows,cols],dtype=bool)



    def max_filte(x,y,step):
    sum_s=[]
    for k in range(-int(step/2),int(step/2)+1):
    for m in range(-int(step/2),int(step/2)+1):
    sum_s.append(magnitude_spectrum[x+k][y+m])
    sum_s.sort()

    if(max(sum_s)>140):
    value=1
    else:
    value=0
    return value

    # return sum_s[(int(step*step/2)+1)]
    def test(Step):
    for i in range(int(Step/2),img.shape[0]-int(Step/2)):
    for j in range(int(Step/2),img.shape[1]-int(Step/2)):
    im_copy_max[i][j]=max_filte(i,j,Step)



    test(3)


    plt.subplot(221),plt.imshow(img, cmap = 'gray')
    plt.title('Input Image'), plt.xticks([]), plt.yticks([])

    plt.subplot(222),plt.imshow(magnitude_spectrum, cmap = 'gray')
    plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])

    plt.subplot(223),plt.imshow(im_copy_max, cmap = 'gray')
    plt.title('im_copy_max Spectrum'), plt.xticks([]), plt.yticks([])

    plt.subplot(224),plt.imshow(laplacian_image, cmap = 'gray')
    plt.title('im_copy_max laplacian_image'), plt.xticks([]), plt.yticks([])

    plt.show()




    img_bad = cv.imread('C:/Users/Administrator/Desktop/00.jpg',0)
    rows, cols
    img_bad = cv2.resize(img_bad,(cols,rows),interpolation=cv2.INTER_CUBIC)
    #im_copy_max=im_copy_max.reshape((rows,cols))
    f = np.fft.fft2(img_bad)
    fshift = np.fft.fftshift(f)


    fshift=fshift*im_copy_max

    #平移逆变换
    f_ishift = np.fft.ifftshift(fshift)
    #傅里叶反变换
    img_back = np.fft.ifft2(f_ishift)
    # 取绝对值



    img_back = np.abs(img_back)


    fshift_image=np.abs(fshift)

    ret,thresh1=cv2.threshold(img_bad,180,255,cv2.THRESH_BINARY)
    plt.subplot(222),plt.imshow(img_back, cmap = 'gray')
    plt.title('Input img_back'), plt.xticks([]), plt.yticks([])
    plt.subplot(221),plt.imshow(img_bad, cmap = 'gray')
    plt.title('Input img_bad'), plt.xticks([]), plt.yticks([])
    plt.subplot(223),plt.imshow(thresh1, cmap = 'gray')
    plt.title('Input thresh1'), plt.xticks([]), plt.yticks([])
    plt.show()


    #小波去噪
    import pywt
    #小波分解
    ##返回 (cA, (cH, cV, cD)), 分别是逼近、水平细节、垂直细节和对角线细节


    #hard data中绝对值小于阈值2的替换为6,大于2的不替换
    img_back_new=pywt.threshold(img_back,150, "hard",0)
    #ret,thresh1=cv2.threshold(img_bad,180,255,cv2.THRESH_BINARY)
    plt.subplot(121),plt.imshow(img_back_new, cmap = 'gray')
    plt.show()


    coeffs = pywt.dwt2(img_back, "haar")
    cA, (cH, cV, cD) = coeffs
    print (cA)


    # 2D一阶重构idwt2
    idwt2(coeffs, wavelet, mode="sym")

    #
    # magnitude_spectrum = 20*np.log(np.abs(fshift))
    #
    #
    #
    #
    # rows, cols = img.shape
    # crow,ccol = rows//2 , cols//2
    # #设计一个高通滤波器对应0, 低频对应1
    # # fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
    #
    #
    #
    #
    #
    # im_copy_max
    # im_10=np.zeros([rows,cols],dtype=float)

    # for i in range(0,rows):
    # for j in range(0,cols):
    # im_10[i][j]=10**(im_copy_max[i][j]/20)
    #
    #
    # Y=im_10

    #
    # im_copy_max=np.zeros([rows,cols],dtype=float)
    # # im_copy_max=fshift
    # def m_filter(x, y, step):
    # sum_s=[]
    # for k in range(-int(step/2),int(step/2)+1):
    # for m in range(-int(step/2),int(step/2)+1):
    # sum_s.append(magnitude_spectrum[x+k][y+m])
    # sum_s.sort()
    # return max(sum_s)
    # def test(Step):
    # for i in range(int(Step/2),img.shape[0]-int(Step/2)):
    # for j in range(int(Step/2),img.shape[1]-int(Step/2)):
    # im_copy_max[i][j]=m_filter(i,j,Step)
    #
    #
    #
    # test(3)
    #
    # # magnitude_spectrum = 20*np.log(np.abs(fshift))
    # Y= np.power(10, im_copy_max/20)
    # fshift=Y
    #
    #
    # ##########################################################
    #
    #
    #
    # #保留高频信号
    # # MASK1=np.ones([rows,cols],dtype=bool)
    # # MASK1[crow-20:crow+20, ccol-20:ccol+20] = 0
    # # #保留低频信号
    # # MASK2=np.zeros([rows,cols],dtype=bool)
    # # MASK2[crow-5:crow+5, ccol-5:ccol+5] = 1
    # #
    # # MASK=MASK1+MASK2
    # # fshift=fshift*MASK1
    #
    #
    #
    # # #保留低频信号
    # # MASK2=np.zeros([rows,cols],dtype=bool)
    # # MASK2[crow-5:crow+5, ccol-5:ccol+5] = 1
    # # fshift=fshift*MASK2
    #
    #
    #
    # #平移逆变换
    # f_ishift = np.fft.ifftshift(fshift)
    # #傅里叶反变换
    # img_back = np.fft.ifft2(f_ishift)
    # # 取绝对值
    # img_back = np.abs(img_back)
    # fshift_image=np.abs(fshift)
    #
    #
    # plt.subplot(322),plt.imshow(fshift_image, cmap = 'gray')
    # plt.title('Input fshift_image'), plt.xticks([]), plt.yticks([])
    #
    # plt.subplot(323),plt.imshow(img, cmap = 'gray')
    # plt.title('Input Image'), plt.xticks([]), plt.yticks([])
    #
    # plt.subplot(324),plt.imshow(img_back, cmap = 'gray')
    # plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
    #
    # plt.subplot(325),plt.imshow(img_back)
    # plt.title('Result in JET'), plt.xticks([]), plt.yticks([])
    # plt.show()
    #
    # # # fft in cv2
    # # dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
    # # dft_shift = np.fft.fftshift(dft)
    # # magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
    # # plt.subplot(121),plt.imshow(img, cmap = 'gray')
    # # plt.title('Input Image'), plt.xticks([]), plt.yticks([])
    # # plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
    # # plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
    # # plt.show()
  • 相关阅读:
    ffplay(2.0.1)中的音视频同步
    (转)ffplay的音视频同步分析之视频同步到音频
    (转) 从ffmpeg中提取出YUV数据
    关于解决用tutorial7教程中的代码打造一款自己的播放器中的声音噪音问题
    基于<最简单的基于FFMPEG+SDL的视频播放器 ver2 (采用SDL2.0)>的一些个人总结
    (转)SDL2.0在mfc窗口中显示yuv的一种方法
    (转)SDL1.2到2.0的迁移指南
    APM (应用性能管理)
    在telnet下操作memcache详解(操作命令详解)
    MYSQL主从数据库搭建
  • 原文地址:https://www.cnblogs.com/shuimuqingyang/p/10898925.html
Copyright © 2020-2023  润新知