• 一个理解基本RCNN的简单例子


    对于一个最简单的RNN网络https://github.com/Teaonly/beginlearning/

    """
    Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
    BSD License
    配套七月视频https://www.bilibili.com/video/av17261517?from=search&seid=1299105350833546417
    """
    import numpy as np

    # data I/O
    data = open('input.txt', 'r').read() # should be simple plain text file
    chars = list(set(data))
    data_size, vocab_size = len(data), len(chars)
    print 'data has %d characters, %d unique.' % (data_size, vocab_size)
    char_to_ix = { ch:i for i,ch in enumerate(chars) }
    ix_to_char = { i:ch for i,ch in enumerate(chars) }

    # hyperparameters
    hidden_size = 100 # size of hidden layer of neurons
    seq_length = 25 # number of steps to unroll the RNN for
    learning_rate = 1e-1

    # model parameters
    Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden
    Whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden
    Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output
    bh = np.zeros((hidden_size, 1)) # hidden bias
    by = np.zeros((vocab_size, 1)) # output bias

    def lossFun(inputs, targets, hprev):
    """
    inputs,targets are both list of integers.
    hprev is Hx1 array of initial hidden state
    returns the loss, gradients on model parameters, and last hidden state
    """
    xs, hs, ys, ps = {}, {}, {}, {}
    hs[-1] = np.copy(hprev)
    loss = 0
    # forward pass
    for t in xrange(len(inputs)):
    xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation
    xs[t][inputs[t]] = 1
    hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state
    ys[t] = np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars
    ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars
    loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)
    # backward pass: compute gradients going backwards
    dWxh, dWhh, dWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
    dbh, dby = np.zeros_like(bh), np.zeros_like(by)
    dhnext = np.zeros_like(hs[0])
    for t in reversed(xrange(len(inputs))):
    dy = np.copy(ps[t])
    dy[targets[t]] -= 1 # backprop into y. see http://cs231n.github.io/neural-networks-case-study/#grad if confused here
    dWhy += np.dot(dy, hs[t].T)
    dby += dy
    dh = np.dot(Why.T, dy) + dhnext # backprop into h
    dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity
    dbh += dhraw
    dWxh += np.dot(dhraw, xs[t].T)
    dWhh += np.dot(dhraw, hs[t-1].T)
    dhnext = np.dot(Whh.T, dhraw)
    for dparam in [dWxh, dWhh, dWhy, dbh, dby]:
    np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
    return loss, dWxh, dWhh, dWhy, dbh, dby, hs[len(inputs)-1]

    def sample(h, seed_ix, n):
    """
    sample a sequence of integers from the model
    h is memory state, seed_ix is seed letter for first time step
    """
    x = np.zeros((vocab_size, 1))
    x[seed_ix] = 1
    ixes = []
    for t in xrange(n):
    h = np.tanh(np.dot(Wxh, x) + np.dot(Whh, h) + bh)
    y = np.dot(Why, h) + by
    p = np.exp(y) / np.sum(np.exp(y))
    ix = np.random.choice(range(vocab_size), p=p.ravel())
    x = np.zeros((vocab_size, 1))
    x[ix] = 1
    ixes.append(ix)
    return ixes

    n, p = 0, 0
    mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
    mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad
    smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0
    while True:
    # prepare inputs (we're sweeping from left to right in steps seq_length long)
    if p+seq_length+1 >= len(data) or n == 0: hprev = np.zeros((hidden_size,1)) # reset RNN memory p = 0 # go from start of data inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]] targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]] # sample from the model now and then if n % 100 == 0: sample_ix = sample(hprev, inputs[0], 200) txt = ''.join(ix_to_char[ix] for ix in sample_ix) print '---- %s ----' % (txt, ) # forward seq_length characters through the net and fetch gradient loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev) smooth_loss = smooth_loss * 0.999 + loss * 0.001 if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress # perform parameter update with Adagrad for param, dparam, mem in zip([Wxh, Whh, Why, bh, by], [dWxh, dWhh, dWhy, dbh, dby], [mWxh, mWhh, mWhy, mbh, mby]): mem += dparam * dparam param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update p += seq_length # move data pointer n += 1 # iteration counter
    
    
  • 相关阅读:
    Game of War
    Unreal Engine 4 性能优化工具(Profiler Tool)
    触屏设备上的多点触碰检测C++代码实现
    独立游戏设计流程:从概念到写码的13个步骤
    ue4 多相机分屏与小地图效果实现教程
    Unreal Engine 4 笔记 2
    3dsMax模型转UE4
    以《西游记》为例 详解游戏设计归纳演绎法
    假期关于产品-设计-逻辑-市场-团队思考节选30篇
    Unreal Engine 4 笔记
  • 原文地址:https://www.cnblogs.com/shuimuqingyang/p/10431703.html
Copyright © 2020-2023  润新知