• BP算法演示


     本文转载自https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

    Background

    Backpropagation is a common method for training a neural network. There is no shortage of papers online that attempt to explain how backpropagation works, but few that include an example with actual numbers. This post is my attempt to explain how it works with a concrete example that folks can compare their own calculations to in order to ensure they understand backpropagation correctly.

    If this kind of thing interests you, you should sign up for my newsletter where I post about AI-related projects that I’m working on.

    Backpropagation in Python

    You can play around with a Python script that I wrote that implements the backpropagation algorithm in this Github repo.

    Backpropagation Visualization

    For an interactive visualization showing a neural network as it learns, check out my Neural Network visualization.

    Additional Resources

    If you find this tutorial useful and want to continue learning about neural networks and their applications, I highly recommend checking out Adrian Rosebrock’s excellent tutorial on Getting Started with Deep Learning and Python.

    Overview

    For this tutorial, we’re going to use a neural network with two inputs, two hidden neurons, two output neurons. Additionally, the hidden and output neurons will include a bias.

    Here’s the basic structure:

    neural_network (7)

    In order to have some numbers to work with, here are the initial weights, the biases, and training inputs/outputs:

    neural_network (9)

    The goal of backpropagation is to optimize the weights so that the neural network can learn how to correctly map arbitrary inputs to outputs.

    For the rest of this tutorial we’re going to work with a single training set: given inputs 0.05 and 0.10, we want the neural network to output 0.01 and 0.99.

    The Forward Pass

    To begin, lets see what the neural network currently predicts given the weights and biases above and inputs of 0.05 and 0.10. To do this we’ll feed those inputs forward though the network.

    We figure out the total net input to each hidden layer neuron, squash the total net input using an activation function (here we use the logistic function), then repeat the process with the output layer neurons.

    Total net input is also referred to as just net input by some sources.

    Here’s how we calculate the total net input for h_1:

    net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1

    net_{h1} = 0.15 * 0.05 + 0.2 * 0.1 + 0.35 * 1 = 0.3775

    We then squash it using the logistic function to get the output of h_1:

    out_{h1} = frac{1}{1+e^{-net_{h1}}} = frac{1}{1+e^{-0.3775}} = 0.593269992

    Carrying out the same process for h_2 we get:

    out_{h2} = 0.596884378

    We repeat this process for the output layer neurons, using the output from the hidden layer neurons as inputs.

    Here’s the output for o_1:

    net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1

    net_{o1} = 0.4 * 0.593269992 + 0.45 * 0.596884378 + 0.6 * 1 = 1.105905967

    out_{o1} = frac{1}{1+e^{-net_{o1}}} = frac{1}{1+e^{-1.105905967}} = 0.75136507

    And carrying out the same process for o_2 we get:

    out_{o2} = 0.772928465

    Calculating the Total Error

    We can now calculate the error for each output neuron using the squared error function and sum them to get the total error:

    E_{total} = sum frac{1}{2}(target - output)^{2}

    Some sources refer to the target as the ideal and the output as the actual.
    The frac{1}{2} is included so that exponent is cancelled when we differentiate later on. The result is eventually multiplied by a learning rate anyway so it doesn’t matter that we introduce a constant here [1].

    For example, the target output for o_1 is 0.01 but the neural network output 0.75136507, therefore its error is:

    E_{o1} = frac{1}{2}(target_{o1} - out_{o1})^{2} = frac{1}{2}(0.01 - 0.75136507)^{2} = 0.274811083

    Repeating this process for o_2 (remembering that the target is 0.99) we get:

    E_{o2} = 0.023560026

    The total error for the neural network is the sum of these errors:

    E_{total} = E_{o1} + E_{o2} = 0.274811083 + 0.023560026 = 0.298371109

    The Backwards Pass

    Our goal with backpropagation is to update each of the weights in the network so that they cause the actual output to be closer the target output, thereby minimizing the error for each output neuron and the network as a whole.

    Output Layer

    Consider w_5. We want to know how much a change in w_5 affects the total error, aka frac{partial E_{total}}{partial w_{5}}.

    frac{partial E_{total}}{partial w_{5}} is read as “the partial derivative of E_{total} with respect to w_{5}“. You can also say “the gradient with respect to w_{5}“.

    By applying the chain rule we know that:

    frac{partial E_{total}}{partial w_{5}} = frac{partial E_{total}}{partial out_{o1}} * frac{partial out_{o1}}{partial net_{o1}} * frac{partial net_{o1}}{partial w_{5}}

    Visually, here’s what we’re doing:

    output_1_backprop (4)

    We need to figure out each piece in this equation.

    First, how much does the total error change with respect to the output?

    E_{total} = frac{1}{2}(target_{o1} - out_{o1})^{2} + frac{1}{2}(target_{o2} - out_{o2})^{2}

    frac{partial E_{total}}{partial out_{o1}} = 2 * frac{1}{2}(target_{o1} - out_{o1})^{2 - 1} * -1 + 0

    frac{partial E_{total}}{partial out_{o1}} = -(target_{o1} - out_{o1}) = -(0.01 - 0.75136507) = 0.74136507

    -(target - out) is sometimes expressed as out - target
    When we take the partial derivative of the total error with respect to out_{o1}, the quantity frac{1}{2}(target_{o2} - out_{o2})^{2} becomes zero because out_{o1} does not affect it which means we’re taking the derivative of a constant which is zero.

    Next, how much does the output of o_1 change with respect to its total net input?

    The partial derivative of the logistic function is the output multiplied by 1 minus the output:

    out_{o1} = frac{1}{1+e^{-net_{o1}}}

    frac{partial out_{o1}}{partial net_{o1}} = out_{o1}(1 - out_{o1}) = 0.75136507(1 - 0.75136507) = 0.186815602

    Finally, how much does the total net input of o1 change with respect to w_5?

    net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1

    frac{partial net_{o1}}{partial w_{5}} = 1 * out_{h1} * w_5^{(1 - 1)} + 0 + 0 = out_{h1} = 0.593269992

    Putting it all together:

    frac{partial E_{total}}{partial w_{5}} = frac{partial E_{total}}{partial out_{o1}} * frac{partial out_{o1}}{partial net_{o1}} * frac{partial net_{o1}}{partial w_{5}}

    frac{partial E_{total}}{partial w_{5}} = 0.74136507 * 0.186815602 * 0.593269992 = 0.082167041

    You’ll often see this calculation combined in the form of the delta rule:

    frac{partial E_{total}}{partial w_{5}} = -(target_{o1} - out_{o1}) * out_{o1}(1 - out_{o1}) * out_{h1}

    Alternatively, we have frac{partial E_{total}}{partial out_{o1}} and frac{partial out_{o1}}{partial net_{o1}} which can be written as frac{partial E_{total}}{partial net_{o1}}, aka delta_{o1} (the Greek letter delta) aka the node delta. We can use this to rewrite the calculation above:

    delta_{o1} = frac{partial E_{total}}{partial out_{o1}} * frac{partial out_{o1}}{partial net_{o1}} = frac{partial E_{total}}{partial net_{o1}}

    delta_{o1} = -(target_{o1} - out_{o1}) * out_{o1}(1 - out_{o1})

    Therefore:

    frac{partial E_{total}}{partial w_{5}} = delta_{o1} out_{h1}

    Some sources extract the negative sign from delta so it would be written as:

    frac{partial E_{total}}{partial w_{5}} = -delta_{o1} out_{h1}

    /*每个权重的梯度都等于与其相连的前一层节点的输出(即out_{o1})乘以与其相连的后一层的反向传播的输出(即delta_{o1},而delta_{o1} = -(target_{o1} - out_{o1}) * out_{o1}(1 - out_{o1})*/

    To decrease the error, we then subtract this value from the current weight (optionally multiplied by some learning rate, eta, which we’ll set to 0.5):

    w_5^{+} = w_5 - eta * frac{partial E_{total}}{partial w_{5}} = 0.4 - 0.5 * 0.082167041 = 0.35891648

    Some sources use alpha (alpha) to represent the learning rate, others use eta(eta), and others even use epsilon (epsilon).

    We can repeat this process to get the new weights w_6w_7, and w_8:

    w_6^{+} = 0.408666186

    w_7^{+} = 0.511301270

    w_8^{+} = 0.561370121

    We perform the actual updates in the neural network after we have the new weights leading into the hidden layer neurons (ie, we use the original weights, not the updated weights, when we continue the backpropagation algorithm below).

    Hidden Layer

    Next, we’ll continue the backwards pass by calculating new values for w_1w_2w_3, and w_4.

    Big picture, here’s what we need to figure out:

    frac{partial E_{total}}{partial w_{1}} = frac{partial E_{total}}{partial out_{h1}} * frac{partial out_{h1}}{partial net_{h1}} * frac{partial net_{h1}}{partial w_{1}}

    Visually:

    nn-calculation

    We’re going to use a similar process as we did for the output layer, but slightly different to account for the fact that the output of each hidden layer neuron contributes to the output (and therefore error) of multiple output neurons. We know that out_{h1} affects both out_{o1} and out_{o2} therefore the frac{partial E_{total}}{partial out_{h1}} needs to take into consideration its effect on the both output neurons:

    frac{partial E_{total}}{partial out_{h1}} = frac{partial E_{o1}}{partial out_{h1}} + frac{partial E_{o2}}{partial out_{h1}}

    Starting with frac{partial E_{o1}}{partial out_{h1}}:

    frac{partial E_{o1}}{partial out_{h1}} = frac{partial E_{o1}}{partial net_{o1}} * frac{partial net_{o1}}{partial out_{h1}}

    We can calculate frac{partial E_{o1}}{partial net_{o1}} using values we calculated earlier:

    frac{partial E_{o1}}{partial net_{o1}} = frac{partial E_{o1}}{partial out_{o1}} * frac{partial out_{o1}}{partial net_{o1}} = 0.74136507 * 0.186815602 = 0.138498562

    And frac{partial net_{o1}}{partial out_{h1}} is equal to w_5:

    net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1

    frac{partial net_{o1}}{partial out_{h1}} = w_5 = 0.40

    Plugging them in:

    frac{partial E_{o1}}{partial out_{h1}} = frac{partial E_{o1}}{partial net_{o1}} * frac{partial net_{o1}}{partial out_{h1}} = 0.138498562 * 0.40 = 0.055399425

    Following the same process for frac{partial E_{o2}}{partial out_{h1}}, we get:

    frac{partial E_{o2}}{partial out_{h1}} = -0.019049119

    Therefore:

    frac{partial E_{total}}{partial out_{h1}} = frac{partial E_{o1}}{partial out_{h1}} + frac{partial E_{o2}}{partial out_{h1}} = 0.055399425 + -0.019049119 = 0.036350306

    Now that we have frac{partial E_{total}}{partial out_{h1}}, we need to figure out frac{partial out_{h1}}{partial net_{h1}} and then frac{partial net_{h1}}{partial w} for each weight:

    out_{h1} = frac{1}{1+e^{-net_{h1}}}

    frac{partial out_{h1}}{partial net_{h1}} = out_{h1}(1 - out_{h1}) = 0.59326999(1 - 0.59326999 ) = 0.241300709

    We calculate the partial derivative of the total net input to h_1 with respect to w_1the same as we did for the output neuron:

    net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1

    frac{partial net_{h1}}{partial w_1} = i_1 = 0.05

    Putting it all together:

    frac{partial E_{total}}{partial w_{1}} = frac{partial E_{total}}{partial out_{h1}} * frac{partial out_{h1}}{partial net_{h1}} * frac{partial net_{h1}}{partial w_{1}}

    frac{partial E_{total}}{partial w_{1}} = 0.036350306 * 0.241300709 * 0.05 = 0.000438568

    You might also see this written as:

    frac{partial E_{total}}{partial w_{1}} = (sumlimits_{o}{frac{partial E_{total}}{partial out_{o}} * frac{partial out_{o}}{partial net_{o}} * frac{partial net_{o}}{partial out_{h1}}}) * frac{partial out_{h1}}{partial net_{h1}} * frac{partial net_{h1}}{partial w_{1}}

    frac{partial E_{total}}{partial w_{1}} = (sumlimits_{o}{delta_{o} * w_{ho}}) * out_{h1}(1 - out_{h1}) * i_{1}

    frac{partial E_{total}}{partial w_{1}} = delta_{h1}i_{1}

    /*每个权重的梯度都等于与其相连的前一层节点的输出(即i1)乘以与其相连的后一层的反向传播的输出(即δh1,一层层求出δh1是关键*/

    We can now update w_1:

    w_1^{+} = w_1 - eta * frac{partial E_{total}}{partial w_{1}} = 0.15 - 0.5 * 0.000438568 = 0.149780716

    Repeating this for w_2w_3, and w_4

    w_2^{+} = 0.19956143

    w_3^{+} = 0.24975114

    w_4^{+} = 0.29950229

    Finally, we’ve updated all of our weights! When we fed forward the 0.05 and 0.1 inputs originally, the error on the network was 0.298371109. After this first round of backpropagation, the total error is now down to 0.291027924. It might not seem like much, but after repeating this process 10,000 times, for example, the error plummets to 0.000035085. At this point, when we feed forward 0.05 and 0.1, the two outputs neurons generate 0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target).

    总结:

    1、每个权重的梯度都等于与其相连的前一层节点的输出  乘以  与其相连的后一层的反向传播的输出,重要的结论说三遍!

    2、新权重 = 原权重 - eta*(总偏差对该权重的梯度值),如

    w_1^{+} = w_1 - eta * frac{partial E_{total}}{partial w_{1}} = 0.15 - 0.5 * 0.000438568 = 0.149780716

    3、参考博文:http://blog.csdn.net/zhongkejingwang/article/details/44514073

  • 相关阅读:
    SASL简单认证和安全框架
    最详细的git rebase解释文章
    基于钻孔数据的三维地质模型可视化
    数字孪生 3D 风电场,智慧风电之陆上风电
    石油储运生产 2D 可视化,组态应用赋能工业智慧发展
    在抽象类中使用@Autowired
    vue点击复制
    利用PHPJWT实现token及刷新token
    PHP win32service Windows 系统后台服务
    SeasLog PHP 日志扩展
  • 原文地址:https://www.cnblogs.com/shuaishuaidefeizhu/p/6776357.html
Copyright © 2020-2023  润新知