• 关于C(n,m) 的奇偶 ,与C(n,0),C(n,1),C(n,2)…C(n,n).当中有多少个奇数


    (n & m) == m  为奇数

    C(n,0),C(n,1),C(n,2)…C(n,n).当中有多少个奇数

    第一种想法是Lucas定理推导,我们分析一下 C(n,m)%2,那么由lucas定理,我们可以写成二进制的形式观察,比如 n=1001101,m是从000000到1001101的枚举,我们知道在该定理中C(0,1)=0,因此如果n=1001101的0对应位置的m二进制位为1那么C(n,m) % 2==0,因此m对应n为0的位置只能填0,而1的位置填0,填1都是1(C(1,0)=C(1,1)=1),不影响结果为奇数,并且保证不会出n的范围,因此所有的情况即是n中1位置对应m位置0,1的枚举,那么结果很明显就是:2^(n中1的个数)

    在这里给出一个判断组合数奇偶性的一个规律:如果(n&m)==m,那么C(n,m)为奇数,否则为偶数 

    这就引出第二种想法,按照二进制考虑&运算,(n&m)==m(m<=n)那么n二进制位为1的m对应的二进制位可以是0或者1,n二进制位为0的m对应的二进制位只可能为0,这样就能保证m与完n之后还是m,做法和第一种是一样的

    #include <bits/stdc++.h>
      #define pr(x) cout << #x << "= " << x << "  " ;
      #define pl(x) cout << #x << "= " << x << endl;
      using  namespace  std;
     
      int  main(){
        int n;
        while(~scanf("%d",&n)){
          int cnt=0;
          while(n){
            if(n&1)cnt++;
            n>>=1;
          }
          printf("%d
    ", 1<<cnt);
        }
        return 0;
      }
    View Code
  • 相关阅读:
    Java技术路线--2循环
    Java技术路线--1基本类型与包装类
    Linux内存管理之UMA模型和NUMA模型
    最长XX子串/数组/子序列
    epoll LT 模式和 ET 模式详解
    OS篇:OS中进程的阻塞与挂起的区别
    约瑟夫环问题
    最大公约数和最小公倍数
    C++之寻找素数(素数筛)
    Linux OOM机制分析
  • 原文地址:https://www.cnblogs.com/shuaihui520/p/10808389.html
Copyright © 2020-2023  润新知