Elastic Stack简介
如果你没有听说过Elastic Stack,那你一定听说过ELK,实际上ELK是三款软件的简称,分别是Elasticsearch、
Logstash、Kibana组成,在发展的过程中,又有新成员Beats的加入,所以就形成了Elastic Stack。所以说,ELK是
旧的称呼,Elastic Stack是新的名字。
全系
全系的Elastic Stack技术栈包括:
Elasticsearch
Elasticsearch 基于java,是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引
副本机制,restful风格接口,多数据源,自动搜索负载等。
Logstash
Logstash 基于java,是一个开源的用于收集,分析和存储日志的工具。
Kibana
Kibana 基于nodejs,也是一个开源和免费的工具,Kibana可以为 Logstash 和 ElasticSearch 提供的日志分析友好的
Web 界面,可以汇总、分析和搜索重要数据日志。
Beats
Beats是elastic公司开源的一款采集系统监控数据的代理agent,是在被监控服务器上以客户端形式运行的数据收集
器的统称,可以直接把数据发送给Elasticsearch或者通过Logstash发送给Elasticsearch,然后进行后续的数据分析活
动。
Beats由如下组成:
- Packetbeat:是一个网络数据包分析器,用于监控、收集网络流量信息,Packetbeat嗅探服务器之间的流量,
解析应用层协议,并关联到消息的处理,其支 持ICMP (v4 and v6)、DNS、HTTP、Mysql、PostgreSQL、
Redis、MongoDB、Memcache等协议; - Filebeat:用于监控、收集服务器日志文件,其已取代 logstash forwarder;
- Metricbeat:可定期获取外部系统的监控指标信息,其可以监控、收集 Apache、HAProxy、MongoDB
MySQL、Nginx、PostgreSQL、Redis、System、Zookeeper等服务; - Winlogbeat:用于监控、收集Windows系统的日志信息;
Elasticsearch
简介
官网:https://www.elastic.co/cn/products/elasticsearch
安装
地址:https://www.elastic.co/cn/downloads/elasticsearch
#创建elsearch用户,Elasticsearch不支持root用户运行
useradd elsearch
#解压安装包
tar -xvf elasticsearch-6.5.4.tar.gz -C /itcast/es/
#修改itcast文件夹为elsearch角色所有
chmod elsearch:elsearch itcast/ -R
#修改配置文件
vim conf/elasticsearch.yml
network.host: 0.0.0.0 #设置ip地址,任意网络均可访问
#说明:在Elasticsearch中如果,network.host不是localhost或者127.0.0.1的话,就会认为是生产环境,
会对环境的要求比较高,我们的测试环境不一定能够满足,一般情况下需要修改2处配置,如下:
#1:修改jvm启动参数
vim conf/jvm.options
-Xms128m #根据自己机器情况修改
-Xmx128m
#2:一个进程在VMAs(虚拟内存区域)创建内存映射最大数量
vim /etc/sysctl.conf
vm.max_map_count=655360
sysctl -p #配置生效
#启动ES服务
su - elsearch
cd bin
./elasticsearch 或 ./elasticsearch -d #后台启动
#通过访问进行测试,看到如下信息,就说明ES启动成功了
{
"name": "dSQV6I8",
"cluster_name": "elasticsearch",
"cluster_uuid": "v5GPTWAtT5emxFdjigFg-w",
"version": {
"number": "6.5.4",
"build_flavor": "default",
"build_type": "tar",
"build_hash": "d2ef93d",
"build_date": "2018-12-17T21:17:40.758843Z",
"build_snapshot": false,
"lucene_version": "7.5.0",
"minimum_wire_compatibility_version": "5.6.0",
"minimum_index_compatibility_version": "5.0.0"
},
"tagline": "You Know, for Search"
}
#停止服务
root@itcast:~# jps
68709 Jps
68072 Elasticsearch
kill 68072 #通过kill结束进程
错误的情况
#启动出错,环境:Centos6
[1]: max file descriptors [4096] for elasticsearch process is too low, increase to at
least [65536]
#解决:切换到root用户,编辑limits.conf 添加类似如下内容
vi /etc/security/limits.conf
#添加如下内容:
* soft nofile 65536
* hard nofile 131072
* soft nproc 2048
* hard nproc 4096
[2]: max number of threads [1024] for user [elsearch] is too low, increase to at least
[4096]
#解决:切换到root用户,进入limits.d目录下修改配置文件。
vi /etc/security/limits.d/90-nproc.conf
#修改如下内容:
* soft nproc 1024
#修改为
* soft nproc 4096
[3]: system call filters failed to install; check the logs and fix your configuration
or disable system call filters at your own risk
#解决:Centos6不支持SecComp,而ES5.2.0默认bootstrap.system_call_filter为true
vim config/elasticsearch.yml
#添加:
bootstrap.system_call_filter: false
成功搭建es的页面
elasticsearch-head
由于ES官方并没有为ES提供界面管理工具,仅仅是提供了后台的服务。elasticsearch-head是一个为ES开发的一个页
面客户端工具,其源码托管于GitHub,地址为:https://github.com/mobz/elasticsearch-head
head提供了4种安装方式:
- 源码安装,通过npm run start启动(不推荐)
- 通过docker安装(推荐)
- 通过chrome插件安装(推荐)
- 通过ES的plugin方式安装(不推荐)
通过docker安装
#拉取镜像
docker pull mobz/elasticsearch-head:5
#创建容器
docker create --name elasticsearch-head -p 9100:9100 mobz/elasticsearch-head:5
#启动容器
docker start elasticsearch-head
通过浏览器进行访问:
注意:
由于前后端分离开发,所以会存在跨域问题,需要在服务端做CORS的配置,如下:
vim elasticsearch.yml
http.cors.enabled: true http.cors.allow-origin: "*"
通过chrome插件的方式安装不存在该问题。
chrome插件的方式安装
打开chrome的应用商店,搜索ElasticSearch Head,安装!
该方法需要网络环境允许
基本概念
索引
- 索引(index)是Elasticsearch对逻辑数据的逻辑存储,所以它可以分为更小的部分。
- 可以把索引看成关系型数据库的表,索引的结构是为快速有效的全文索引准备的,特别是它不存储原始值。
- Elasticsearch可以把索引存放在一台机器或者分散在多台服务器上,每个索引有一或多个分片(shard),每个分片可以有多个副本(replica)。
文档
- 存储在Elasticsearch中的主要实体叫文档(document)。用关系型数据库来类比的话,一个文档相当于数据库
表中的一行记录。 - Elasticsearch和MongoDB中的文档类似,都可以有不同的结构,但Elasticsearch的文档中,相同字段必须有相
同类型。 - 文档由多个字段组成,每个字段可能多次出现在一个文档里,这样的字段叫多值字段(multivalued)。
- 每个字段的类型,可以是文本、数值、日期等。字段类型也可以是复杂类型,一个字段包含其他子文档或者数组。
映射
- 所有文档写进索引之前都会先进行分析,如何将输入的文本分割为词条、哪些词条又会被过滤,这种行为叫做
映射(mapping)。一般由用户自己定义规则。
文档类型
- 在Elasticsearch中,一个索引对象可以存储很多不同用途的对象。例如,一个博客应用程序可以保存文章和评
论。 - 每个文档可以有不同的结构。
- 不同的文档类型不能为相同的属性设置不同的类型。例如,在同一索引中的所有文档类型中,一个叫title的字段
必须具有相同的类型。
RESTful API
在Elasticsearch中,提供了功能丰富的RESTful API的操作,包括基本的CRUD、创建索引、删除索引等操作。
创建非结构化索引
在Lucene中,创建索引是需要定义字段名称以及字段的类型的,在Elasticsearch中提供了非结构化的索引,就是不
需要创建索引结构,即可写入数据到索引中,实际上在Elasticsearch底层会进行结构化操作,此操作对用户是透明
的。
创建空索引:
PUT /haoke
{
"settings": {
"index": {
"number_of_shards": "2", #分片数
"number_of_replicas": "0" #副本数
}
}
}
#删除索引
DELETE /haoke
插入数据
URL规则:
POST /{索引}/{类型}/{id}
POST /haoke/user/1001
#数据
{
"id":1001,
"name":"张三",
"age":20,
"sex":"男"
}
#响应
{
"_index": "haoke",
"_type": "user",
"_id": "1",
"_version": 1,
"result": "created",
"_shards": {
"total": 1,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1
}
说明:非结构化的索引,不需要事先创建,直接插入数据默认创建索引。
不指定id插入数据:
POST /haoke/user/
{
"id":1002,
"name":"张三",
"age":20,
"sex":"男"
}
更新数据
在Elasticsearch中,文档数据是不为修改的,但是可以通过覆盖的方式进行更新。
PUT /haoke/user/1001
{
"id":1001,
"name":"张三",
"age":21,
"sex":"女"
}
更新结果如下:
可以看到数据已经被覆盖了。
问题来了,可以局部更新吗? -- 可以的。
前面不是说,文档数据不能更新吗? 其实是这样的:
在内部,依然会查询到这个文档数据,然后进行覆盖操作,步骤如下:
- 从旧文档中检索JSON
- 修改它
- 删除旧文档
- 索引新文档
示例:
#注意:这里多了_update标识
POST /haoke/user/1001/_update
{
"doc":{
"age":23
}
}
可以看到数据已经被局部更新了。
删除数据
在Elasticsearch中,删除文档数据,只需要发起DELETE请求即可。
DELETE 1 /haoke/user/1001
需要注意的是,result表示已经删除,version也更加了。
如果删除一条不存在的数据,会响应404:
说明:
删除一个文档也不会立即从磁盘上移除,它只是被标记成已删除。Elasticsearch将会在你之后添加更多索引的
时候才会在后台进行删除内容的清理。
搜索数据
根据id搜索数据
GET /haoke/user/BbPe_WcB9cFOnF3uebvr
#返回的数据如下
{
"_index": "haoke",
"_type": "user",
"_id": "BbPe_WcB9cFOnF3uebvr",
"_version": 8,
"found": true,
"_source": { #原始数据在这里
"id": 1002,
"name": "李四",
"age": 40,
"sex": "男"
}
}
搜索全部数据
GET /haoke/user/_search
响应:(默认返回10条数据)
{
"took": 26,
"timed_out": false,
"_shards": {
"total": 2,
"successful": 2,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 4,
"max_score": 1,
"hits": [
{
"_index": "haoke",
"_type": "user",
"_id": "BbPe_WcB9cFOnF3uebvr",
"_score": 1,
"_source": {
"id": 1002,
"name": "李四",
"age": 40,
"sex": "男"
}
},
{
"_index": "haoke",
"_type": "user",
"_id": "1001",
"_score": 1,
"_source": {
"id": 1001,
"name": "张三",
"age": 20,
"sex": "男"
}
},
{
"_index": "haoke",
"_type": "user",
"_id": "1003",
"_score": 1,
"_source": {
"id": 1003,
"name": "王五",
"age": 30,
"sex": "男"
}
},
{
"_index": "haoke",
"_type": "user",
"_id": "1004",
"_score": 1,
"_source": {
"id": 1004,
"name": "赵六",
"age": 30,
"sex": "男"
}
}
]
}
}
关键字搜素数据
#查询年龄等于20的用户
GET /haoke/user/_search?q=age:20
结果:
DSL搜索
Elasticsearch提供丰富且灵活的查询语言叫做DSL查询(Query DSL),它允许你构建更加复杂、强大的查询。
DSL(Domain Specific Language特定领域语言)以JSON请求体的形式出现。
POST /haoke/user/_search
#请求体
{
"query" : {
"match" : { #match只是查询的一种
"age" : 20
}
}
}
响应数据:
实现:查询年龄大于30岁的男性用户
现有数据:
POST /haoke/user/_search
#请求数据
{
"query": {
"bool": {
"filter": {
"range": {
"age": {
"gt": 30
}
}
},
"must": {
"match": {
"sex": "男"
}
}
}
}
}
查询结果:
全文搜索
POST /haoke/user/_search
#请求数据
{
"query": {
"match": {
"name": "张三 李四"
}
}
}
高亮显示
POST /haoke/user/_search
{
"query": {
"match": {
"name": "张三 李四"
}
},
"highlight": {
"fields": {
"name": {}
}
}
}
聚合
在Elasticsearch中,支持聚合操作,类似SQL中的group by操作。
POST /haoke/user/_search
{
"aggs": {
"all_interests": {
"terms": {
"field": "age"
}
}
}
}
结果:
从结果可以看出,年龄30的有2条数据,20的有一条,40的一条。
核心详解
文档
在Elasticsearch中,文档以JSON格式进行存储,可以是复杂的结构,如:
{
"_index": "haoke",
"_type": "user",
"_id": "1005",
"_version": 1,
"_score": 1,
"_source": {
"id": 1005,
"name": "孙七",
"age": 37,
"sex": "女",
"card": {
"card_number": "123456789"
}
}
}
其中,card是一个复杂对象,嵌套的Card对象。
元数据(metadata)
一个文档不只有数据。它还包含了元数据(metadata)——关于文档的信息。三个必须的元数据节点是:
节点 | 说明 |
---|---|
_index |
文档存储的地方 |
_type |
文档代表的对象的类 |
_id |
文档的唯一标识 |
_index
索引(index)类似于关系型数据库里的“数据库”——它是我们存储和索引关联数据的地方。
提示:
事实上,我们的数据被存储和索引在分片(shards)中,索引只是一个把一个或多个分片分组在一起的逻辑空
间。然而,这只是一些内部细节——我们的程序完全不用关心分片。对于我们的程序而言,文档存储在索引
(index)中。剩下的细节由Elasticsearch关心既可。
_type
在应用中,我们使用对象表示一些“事物”,例如一个用户、一篇博客、一个评论,或者一封邮件。每个对象都属于一
个类(class),这个类定义了属性或与对象关联的数据。user 类的对象可能包含姓名、性别、年龄和Email地址。
在关系型数据库中,我们经常将相同类的对象存储在一个表里,因为它们有着相同的结构。同理,在Elasticsearch
中,我们使用相同类型(type)的文档表示相同的“事物”,因为他们的数据结构也是相同的。
每个类型(type)都有自己的映射(mapping)或者结构定义,就像传统数据库表中的列一样(字段)。所有类型下的文档被存储
在同一个索引下,但是类型的映射(mapping)会告诉Elasticsearch不同的文档如何被索引。
_type 的名字可以是大写或小写,不能包含下划线或逗号。我们将使用blog 做为类型名。
查询响应
指定响应字段
在响应的数据中,如果我们不需要全部的字段,可以指定某些需要的字段进行返回。
GET /haoke/user/1005?_source=id,name
#响应
{
"_index": "haoke",
"_type": "user",
"_id": "1005",
"_version": 1,
"found": true,
"_source": {
"name": "孙七",
"id": 1005
}
}
如不需要返回元数据,仅仅返回原始数据,可以这样:
GET /haoke/1 user/1005/_source
还可以这样:
GET /haoke/user/1005/_source?_1 source=id,name
判断文档是否存在
如果我们只需要判断文档是否存在,而不是查询文档内容,那么可以这样:
HEAD /haoke/user/1005
HEAD 1 /haoke/user/1006
当然,这只表示你在查询的那一刻文档不存在,但并不表示几毫秒后依旧不存在。另一个进程在这期间可能创
建新文档。
批量操作
有些情况下可以通过批量操作以减少网络请求。如:批量查询、批量插入数据。
批量查询
POST /haoke/user/_mget
{
"ids" : [ "1001", "1003" ]
}
结果:
_bulk操作
在Elasticsearch中,支持批量的插入、修改、删除操作,都是通过_bulk的api完成的。
请求格式如下:(请求格式不同寻常)
{ action: { metadata }}
{ request body }
{ action: { metadata }}
{ request body }
...
批量插入数据:
{"create":{"_index":"haoke","_type":"user","_id":2001}}
{"id":2001,"name":"name1","age": 20,"sex": "男"}
{"create":{"_index":"haoke","_type":"user","_id":2002}}
{"id":2002,"name":"name2","age": 20,"sex": "男"}
{"create":{"_index":"haoke","_type":"user","_id":2003}}
{"id":2003,"name":"name3","age": 20,"sex": "男"}
注意最后一行的回车
批量删除:
{"delete":{"_index":"haoke","_type":"user","_id":2001}}
{"delete":{"_index":"haoke","_type":"user","_id":2002}}
{"delete":{"_index":"haoke","_type":"user","_id":2003}}
由于delete没有请求体,所以,action的下一行直接就是下一个action。
其他操作就类似了。
一次请求多少性能最高?
- 整个批量请求需要被加载到接受我们请求节点的内存里,所以请求越大,给其它请求可用的内存就越小。有一
个最佳的bulk请求大小。超过这个大小,性能不再提升而且可能降低。 - 最佳大小,当然并不是一个固定的数字。它完全取决于你的硬件、你文档的大小和复杂度以及索引和搜索的负
载。 - 幸运的是,这个最佳点(sweetspot)还是容易找到的:试着批量索引标准的文档,随着大小的增长,当性能开始
降低,说明你每个批次的大小太大了。开始的数量可以在1000~5000个文档之间,如果你的文档非常大,可以
使用较小的批次。 - 通常着眼于你请求批次的物理大小是非常有用的。一千个1kB的文档和一千个1MB的文档大不相同。一个好的
批次最好保持在5-15MB大小间。
分页
和SQL使用LIMIT 关键字返回只有一页的结果一样,Elasticsearch接受from 和size 参数:
size: 结果数,默认10
from: 跳过开始的结果数,默认0
如果你想每页显示5个结果,页码从1到3,那请求如下:
GET /_search?size=5
GET /_search?size=5&from=5
GET /_search?size=5&from=10
应该当心分页太深或者一次请求太多的结果。结果在返回前会被排序。但是记住一个搜索请求常常涉及多个分
片。每个分片生成自己排好序的结果,它们接着需要集中起来排序以确保整体排序正确。
GET /haoke/user/_1 search?size=1&from=2
在集群系统中深度分页
为了理解为什么深度分页是有问题的,让我们假设在一个有5个主分片的索引中搜索。当我们请求结果的第一
页(结果1到10)时,每个分片产生自己最顶端10个结果然后返回它们给请求节点(requesting node),它再
排序这所有的50个结果以选出顶端的10个结果。
现在假设我们请求第1000页——结果10001到10010。工作方式都相同,不同的是每个分片都必须产生顶端的
10010个结果。然后请求节点排序这50050个结果并丢弃50040个!你可以看到在分布式系统中,排序结果的花费随着分页的深入而成倍增长。这也是为什么网络搜索引擎中任何
语句不能返回多于1000个结果的原因。
映射
前面我们创建的索引以及插入数据,都是由Elasticsearch进行自动判断类型,有些时候我们是需要进行明确字段类型
的,否则,自动判断的类型和实际需求是不相符的。
自动判断的规则如下:
JSON type | Field type |
---|---|
Boolean: true or false |
"boolean" |
Whole number:123 |
"long" |
Floating point: 123.45 |
"double" |
String, valid date: "2014-09-15" |
"date" |
String: "foo bar" |
"string" |
Elasticsearch中支持的类型如下:
类型 | 表示的数据类型 |
---|---|
String | string , text , keyword |
Whole number | byte , short , integer , long |
Floating point | float , double |
Boolean | boolean |
Date | date |
-
string类型在ElasticSearch 旧版本中使用较多,从ElasticSearch 5.x开始不再支持string,由text和
keyword类型替代。 -
text 类型(会被分词),当一个字段是要被全文搜索的,比如Email内容、产品描述,应该使用text类型。设置text类型
以后,字段内容会被分析,在生成倒排索引以前,字符串会被分析器分成一个一个词项。text类型的字段
不用于排序,很少用于聚合。 -
keyword类型(不会分词)适用于索引结构化的字段,比如email地址、主机名、状态码和标签。如果字段需要进行过
滤(比如查找已发布博客中status属性为published的文章)、排序、聚合。keyword类型的字段只能通过精
确值搜索到。
创建明确类型的索引:
PUT /itcast
{
"settings": {
"index": {
"number_of_shards": "2",
"number_of_replicas": "0"
}
},
"mappings": {
"person": {
"properties": {
"name": {
"type": "text"
},
"age": {
"type": "integer"
},
"mail": {
"type": "keyword"
},
"hobby": {
"type": "text"
}
}
}
}
}
查看映射:
GET /itcast/_mapping
插入数据:
POST /itcast/_bulk
{"index":{"_index":"itcast","_type":"person"}}
{"name":"张三","age": 20,"mail": "111@qq.com","hobby":"羽毛球、乒乓球、足球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"李四","age": 21,"mail": "222@qq.com","hobby":"羽毛球、乒乓球、足球、篮球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"王五","age": 22,"mail": "333@qq.com","hobby":"羽毛球、篮球、游泳、听音乐"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"赵六","age": 23,"mail": "444@qq.com","hobby":"跑步、游泳"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"孙七","age": 24,"mail": "555@qq.com","hobby":"听音乐、看电影"}
测试搜索:
POST /itcast/person/_search
{
"query" : {
"match" : {
"hobby" : "音乐"
}
}
}