• Theano2.1.10-基础知识之循环


    来自:http://deeplearning.net/software/theano/tutorial/loop.html

    loop

    一、Scan

    • 一个递归的通常的形式,可以用来作为循环语句。
    • 约间和映射(在第一个(leading,个人翻译成第一个)维度上进行循环)是scan的特殊情况
    • 沿着一些输入序列scan一个函数,然后在每个时间步上生成一个输出。
    • 该函数可以查看函数的前K个时间步的结果。
    • sum() 可以通过在一个列表上使用 z + x(i) 函数(初始化为Z=0)来得到结果。
    • 通常来说,一个for循环可以表示成一个scan()操作,而且scan是与theano的循环联系最紧密的。 
    • 使用scan而不是for循环的优势:
      • 迭代的次数是符号graph的一部分。
      • 最小化GPU的迁移(如果用到GPU的话)。
      • 通过连续的步骤计算梯度。
      • 比python中使用theano编译后的for循环稍微快一点。
      • 通过检测实际用到的内存的数量,来降低总的内存使用情况。

    所有的文档可以查看库对应的: Scan.

    1.1 Scan 例子: 逐元素计算 tanh(x(t).dot(W) + b)

    import theano
    import theano.tensor as T
    import numpy as np
    
    # defining the tensor variables
    X = T.matrix("X")
    W = T.matrix("W")
    b_sym = T.vector("b_sym")
    
    results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym), sequences=X)
    compute_elementwise = theano.function(inputs=[X, W, b_sym], outputs=[results])
    
    # test values
    x = np.eye(2, dtype=theano.config.floatX)
    w = np.ones((2, 2), dtype=theano.config.floatX)
    b = np.ones((2), dtype=theano.config.floatX)
    b[1] = 2
    
    print compute_elementwise(x, w, b)[0]
    
    # comparison with numpy
    print np.tanh(x.dot(w) + b)
    1.2 Scan 例子:计算序列 x(t) = tanh(x(t - 1).dot(W) + y(t).dot(U) + p(T - t).dot(V))

    import theano
    import theano.tensor as T
    import numpy as np
    
    # define tensor variables
    X = T.vector("X")
    W = T.matrix("W")
    b_sym = T.vector("b_sym")
    U = T.matrix("U")
    Y = T.matrix("Y")
    V = T.matrix("V")
    P = T.matrix("P")
    
    results, updates = theano.scan(lambda y, p, x_tm1: T.tanh(T.dot(x_tm1, W) + T.dot(y, U) + T.dot(p, V)),
              sequences=[Y, P[::-1]], outputs_info=[X])
    compute_seq = theano.function(inputs=[X, W, Y, U, P, V], outputs=[results])
    
    # test values
    x = np.zeros((2), dtype=theano.config.floatX)
    x[1] = 1
    w = np.ones((2, 2), dtype=theano.config.floatX)
    y = np.ones((5, 2), dtype=theano.config.floatX)
    y[0, :] = -3
    u = np.ones((2, 2), dtype=theano.config.floatX)
    p = np.ones((5, 2), dtype=theano.config.floatX)
    p[0, :] = 3
    v = np.ones((2, 2), dtype=theano.config.floatX)
    
    print compute_seq(x, w, y, u, p, v)[0]
    
    # comparison with numpy
    x_res = np.zeros((5, 2), dtype=theano.config.floatX)
    x_res[0] = np.tanh(x.dot(w) + y[0].dot(u) + p[4].dot(v))
    for i in range(1, 5):
      x_res[i] = np.tanh(x_res[i - 1].dot(w) + y[i].dot(u) + p[4-i].dot(v))
    print x_res
    1.3 Scan 例子: 计算 X的线(指的是按照某一维度方向) 范数

    import theano
    import theano.tensor as T
    import numpy as np
    
    # define tensor variable
    X = T.matrix("X")
    results, updates = theano.scan(lambda x_i: T.sqrt((x_i ** 2).sum()), sequences=[X])
    compute_norm_lines = theano.function(inputs=[X], outputs=[results])
    
    # test value
    x = np.diag(np.arange(1, 6, dtype=theano.config.floatX), 1)
    print compute_norm_lines(x)[0]
    
    # comparison with numpy
    print np.sqrt((x ** 2).sum(1))
    1.4 Scan 例子:计算x的列的范数 

    import theano
    import theano.tensor as T
    import numpy as np
    
    # define tensor variable
    X = T.matrix("X")
    results, updates = theano.scan(lambda x_i: T.sqrt((x_i ** 2).sum()), sequences=[X.T])
    compute_norm_cols = theano.function(inputs=[X], outputs=[results])
    
    # test value
    x = np.diag(np.arange(1, 6, dtype=theano.config.floatX), 1)
    print compute_norm_cols(x)[0]
    
    # comparison with numpy
    print np.sqrt((x ** 2).sum(0))
    
    1.5 Scan 例子: 计算x的迹

    import theano
    import theano.tensor as T
    import numpy as np
    floatX = "float32"
    
    # define tensor variable
    X = T.matrix("X")
    results, updates = theano.scan(lambda i, j, t_f: T.cast(X[i, j] + t_f, floatX),
                      sequences=[T.arange(X.shape[0]), T.arange(X.shape[1])],
                      outputs_info=np.asarray(0., dtype=floatX))
    result = results[-1]
    compute_trace = theano.function(inputs=[X], outputs=[result])
    
    # test value
    x = np.eye(5, dtype=theano.config.floatX)
    x[0] = np.arange(5, dtype=theano.config.floatX)
    print compute_trace(x)[0]
    
    # comparison with numpy
    print np.diagonal(x).sum()

    1.6 Scan 例子:计算序列 x(t) = x(t - 2).dot(U) + x(t - 1).dot(V) + tanh(x(t - 1).dot(W) + b)

    import theano
    import theano.tensor as T
    import numpy as np
    
    # define tensor variables
    X = T.matrix("X")
    W = T.matrix("W")
    b_sym = T.vector("b_sym")
    U = T.matrix("U")
    V = T.matrix("V")
    n_sym = T.iscalar("n_sym")
    
    results, updates = theano.scan(lambda x_tm2, x_tm1: T.dot(x_tm2, U) + T.dot(x_tm1, V) + T.tanh(T.dot(x_tm1, W) + b_sym),
                        n_steps=n_sym, outputs_info=[dict(initial=X, taps=[-2, -1])])
    compute_seq2 = theano.function(inputs=[X, U, V, W, b_sym, n_sym], outputs=[results])
    
    # test values
    x = np.zeros((2, 2), dtype=theano.config.floatX) # the initial value must be able to return x[-2]
    x[1, 1] = 1
    w = 0.5 * np.ones((2, 2), dtype=theano.config.floatX)
    u = 0.5 * (np.ones((2, 2), dtype=theano.config.floatX) - np.eye(2, dtype=theano.config.floatX))
    v = 0.5 * np.ones((2, 2), dtype=theano.config.floatX)
    n = 10
    b = np.ones((2), dtype=theano.config.floatX)
    
    print compute_seq2(x, u, v, w, b, n)
    
    # comparison with numpy
    x_res = np.zeros((10, 2))
    x_res[0] = x[0].dot(u) + x[1].dot(v) + np.tanh(x[1].dot(w) + b)
    x_res[1] = x[1].dot(u) + x_res[0].dot(v) + np.tanh(x_res[0].dot(w) + b)
    x_res[2] = x_res[0].dot(u) + x_res[1].dot(v) + np.tanh(x_res[1].dot(w) + b)
    for i in range(2, 10):
      x_res[i] = (x_res[i - 2].dot(u) + x_res[i - 1].dot(v) +
                  np.tanh(x_res[i - 1].dot(w) + b))
    print x_res
    1.7 Scan 例子:计算 y = tanh(v.dot(A))  关于 x 的jacobian

    import theano
    import theano.tensor as T
    import numpy as np
    
    # define tensor variables
    v = T.vector()
    A = T.matrix()
    y = T.tanh(T.dot(v, A))
    results, updates = theano.scan(lambda i: T.grad(y[i], v), sequences=[T.arange(y.shape[0])])
    compute_jac_t = theano.function([A, v], [results], allow_input_downcast=True) # shape (d_out, d_in)
    
    # test values
    x = np.eye(5, dtype=theano.config.floatX)[0]
    w = np.eye(5, 3, dtype=theano.config.floatX)
    w[2] = np.ones((3), dtype=theano.config.floatX)
    print compute_jac_t(w, x)[0]
    
    # compare with numpy
    print ((1 - np.tanh(x.dot(w)) ** 2) * w).T

        注意到我们需要对y的索引值而不是y的元素进行迭代。原因在于scan会对它的内部函数创建一个占位符变量,该占位符变量没有和需要替换的那个变量同样的依赖条件。

    1.8 Scan 例子: 在scan中累计循环次数

    import theano
    import theano.tensor as T
    import numpy as np
    
    # define shared variables
    k = theano.shared(0)
    n_sym = T.iscalar("n_sym")
    
    results, updates = theano.scan(lambda:{k:(k + 1)}, n_steps=n_sym)
    accumulator = theano.function([n_sym], [], updates=updates, allow_input_downcast=True)
    
    k.get_value()
    accumulator(5)
    k.get_value()
     1.9 Scan 例子:计算 tanh(v.dot(W) + b) * d ,这里d 是 二项式

    import theano
    import theano.tensor as T
    import numpy as np
    
    # define tensor variables
    X = T.matrix("X")
    W = T.matrix("W")
    b_sym = T.vector("b_sym")
    
    # define shared random stream
    trng = T.shared_randomstreams.RandomStreams(1234)
    d=trng.binomial(size=W[1].shape)
    
    results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym) * d, sequences=X)
    compute_with_bnoise = theano.function(inputs=[X, W, b_sym], outputs=[results],
                              updates=updates, allow_input_downcast=True)
    x = np.eye(10, 2, dtype=theano.config.floatX)
    w = np.ones((2, 2), dtype=theano.config.floatX)
    b = np.ones((2), dtype=theano.config.floatX)
    
    print compute_with_bnoise(x, w, b)

        注意到如果你想使用一个不会通过scan循环更新的随机变量 d ,你就应该将这个变量作为参数传递给non_sequences 。

    1.10 Scan 例子: 计算 pow(A, k)

    import theano
    import theano.tensor as T
    theano.config.warn.subtensor_merge_bug = False
    
    k = T.iscalar("k")
    A = T.vector("A")
    
    def inner_fct(prior_result, B):
        return prior_result * B
    
    # Symbolic description of the result
    result, updates = theano.scan(fn=inner_fct,
                                outputs_info=T.ones_like(A),
                                non_sequences=A, n_steps=k)
    
    # Scan has provided us with A ** 1 through A ** k.  Keep only the last
    # value. Scan notices this and does not waste memory saving them.
    final_result = result[-1]
    
    power = theano.function(inputs=[A, k], outputs=final_result,
                          updates=updates)
    
    print power(range(10), 2)
    #[  0.   1.   4.   9.  16.  25.  36.  49.  64.  81.]
    1.11 Scan 例子: 计算一个多项式

    import numpy
    import theano
    import theano.tensor as T
    theano.config.warn.subtensor_merge_bug = False
    
    coefficients = theano.tensor.vector("coefficients")
    x = T.scalar("x")
    max_coefficients_supported = 10000
    
    # Generate the components of the polynomial
    full_range=theano.tensor.arange(max_coefficients_supported)
    components, updates = theano.scan(fn=lambda coeff, power, free_var:
                                       coeff * (free_var ** power),
                                    outputs_info=None,
                                    sequences=[coefficients, full_range],
                                    non_sequences=x)
    
    polynomial = components.sum()
    calculate_polynomial = theano.function(inputs=[coefficients, x],
                                         outputs=polynomial)
    
    test_coeff = numpy.asarray([1, 0, 2], dtype=numpy.float32)
    print calculate_polynomial(test_coeff, 3)
    # 19.0

    二、Exercise

        运行两个例子。

        修改并执行多项式的例子,通过scan来进行约间。

    答案(Solution

    #!/usr/bin/env python
    # Theano tutorial
    # Solution to Exercise in section 'Loop'
    from __future__ import print_function
    import numpy
    
    import theano
    import theano.tensor as tt
    
    # 1. First example
    
    theano.config.warn.subtensor_merge_bug = False
    
    k = tt.iscalar("k")
    A = tt.vector("A")
    
    
    def inner_fct(prior_result, A):
        return prior_result * A
    
    # Symbolic description of the result
    result, updates = theano.scan(fn=inner_fct,
                                  outputs_info=tt.ones_like(A),
                                  non_sequences=A, n_steps=k)
    
    # Scan has provided us with A ** 1 through A ** k.  Keep only the last
    # value. Scan notices this and does not waste memory saving them.
    final_result = result[-1]
    
    power = theano.function(inputs=[A, k], outputs=final_result,
                            updates=updates)
    
    print(power(range(10), 2))
    # [  0.   1.   4.   9.  16.  25.  36.  49.  64.  81.]
    
    
    # 2. Second example
    
    coefficients = tt.vector("coefficients")
    x = tt.scalar("x")
    max_coefficients_supported = 10000
    
    # Generate the components of the polynomial
    full_range = tt.arange(max_coefficients_supported)
    components, updates = theano.scan(fn=lambda coeff, power, free_var:
                                      coeff * (free_var ** power),
                                      sequences=[coefficients, full_range],
                                      outputs_info=None,
                                      non_sequences=x)
    polynomial = components.sum()
    calculate_polynomial1 = theano.function(inputs=[coefficients, x],
                                            outputs=polynomial)
    
    test_coeff = numpy.asarray([1, 0, 2], dtype=numpy.float32)
    print(calculate_polynomial1(test_coeff, 3))
    # 19.0
    
    # 3. Reduction performed inside scan
    
    theano.config.warn.subtensor_merge_bug = False
    
    coefficients = tt.vector("coefficients")
    x = tt.scalar("x")
    max_coefficients_supported = 10000
    
    # Generate the components of the polynomial
    full_range = tt.arange(max_coefficients_supported)
    
    
    outputs_info = tt.as_tensor_variable(numpy.asarray(0, 'float64'))
    
    components, updates = theano.scan(fn=lambda coeff, power, prior_value, free_var:
                                      prior_value + (coeff * (free_var ** power)),
                                      sequences=[coefficients, full_range],
                                      outputs_info=outputs_info,
                                      non_sequences=x)
    
    polynomial = components[-1]
    calculate_polynomial = theano.function(inputs=[coefficients, x],
                                           outputs=polynomial, updates=updates)
    
    test_coeff = numpy.asarray([1, 0, 2], dtype=numpy.float32)
    print(calculate_polynomial(test_coeff, 3))
    # 19.0

    参考资料:

    [1]官网:http://deeplearning.net/software/theano/tutorial/loop.html

  • 相关阅读:
    用户场景分析
    团队项目个人工作总结(4月22日)
    团队项目个人工作总结(4月21日)
    团队项目个人工作总结(4月20日)
    第九周学习进度情况
    站立会议10-个人总结
    站立会议9-个人总结
    站立会议8-个人总结
    textarea中文提交乱码问题解决
    站立会议7-个人总结
  • 原文地址:https://www.cnblogs.com/shouhuxianjian/p/4590226.html
Copyright © 2020-2023  润新知