• MNIST机器学习入门


     "python: 3.5"

    # -*- coding: utf-8 -*-
    """
    Created on Tue Oct 16 15:29:38 2018

    @author: Administrator
    """

    import tensorflow as tf
    "引入input_data.py,注:Python文件必须与input_data.py在同一文件夹下"
    from tensorflow.examples.tutorials.mnist import input_data
    def myprint(v):
    print(v)
    print(type(v))
    try:
    print(v.shape)
    except:
    try:
    print(len(v))
    except:
    pass


    if __name__ == '__main__':
    mnist = input_data.read_data_sets('./input_data', one_hot=True, validation_size=100)
    myprint(mnist.train.labels)
    myprint(mnist.validation.labels)
    myprint(mnist.test.labels)
    myprint(mnist.train.images)
    myprint(mnist.validation.images)
    myprint(mnist.test.images)
    print("Training data size:", mnist.train.num_examples)
    "x不是一个特定的值,而是一个占位符placeholder,我们在TensorFlow运行计算时输入这个值。"
    x = tf.placeholder("float", [None, 784])
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    "建立模型"
    y = tf.nn.softmax(tf.matmul(x,W) + b)
    "输入正确值"
    y_ = tf.placeholder("float", [None,10])
    "计算交叉熵"
    cross_entropy = -tf.reduce_sum(y_*tf.log(y))
    "用梯度下降算法训练模型"
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
    init = tf.initialize_all_variables()
    sess = tf.Session()
    sess.run(init)
    for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
    "评估模型"
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    print (sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

    结果截图:

    成功率:0.9066 基本在0.91左右

  • 相关阅读:
    ORACLE 日期格式
    Oracle 12c release 2的安装
    InstantClient+PLSQL安装配置教程
    POSTMAN打印日志与json文件传参
    POSTMAN Request的几个要素
    Python+selenium处理滚动条
    Keys 类键盘操作的常用方法
    ActionChains类鼠标操作的常用方法
    Python+webdriver 文件上传自动化
    【SDOI2011】染色
  • 原文地址:https://www.cnblogs.com/shouhutian/p/9801855.html
Copyright © 2020-2023  润新知