• 【SCOI2010】股票交易


    Description

    【SCOI2010】股票交易

    在T天时间内,第(i)天股票购入价为(ap_i),出售价为(bp_i),每天最多购入(as_i)股,最多出售(bs_i)

    任意时刻手中的股票数不能超过(Maxp),且两次交易至少间隔(W)

    最大化收益,初始资金视为无限大

    Solution

    单调队列+dp

    根据题意不难设计状态,定义(f[i][j])表示前(i)天,手里最后有(j)个股票的最大收益,那么状态转移方程就是:

    [f[i][j]= egin{cases} f[i-1][j] \ f[i-w-1][k]-ap[i]*(j-k) & kin[j-as[i],j)\ f[i-w-1][k]+bp[i]*(k-j) & kin(j,j+bs[i]] end{cases} ]

    以第二个式子为例,我们可以变形得到(f[i][j]=f[i-w-1][k]+ap[i]*k-ap[i]*j)

    这个式子符合单调队列的一般形式,所以我们可以用单调队列进行优化

    第三个式子同理

    时间复杂度为(O(TMaxp))

    Code

    #include <bits/stdc++.h>
    // check if it is judged online
    namespace shl {
    	typedef long long ll;
    	inline int read() {
    		int ret = 0, op = 1;
    		char c = getchar();
    		while (!isdigit(c)) {
    			if (c == '-') op = -1;
    			c = getchar();
    		}
    		while (isdigit(c)) {
    			ret = ret * 10 + c - '0';
    			c = getchar();
    		}
    		return ret * op;
    	}
    	const int N = 2010;
    	int n, m, w;
    	int as[N], bs[N], ap[N], bp[N];
    	int head, tail, que[N];
    	int f[N][N];
    	inline int calca(int i, int ww, int k) {
    		return f[i - ww - 1][k] + ap[i] * k;
    	}
    	inline int calcb(int i, int ww, int k) {
    		return f[i - ww - 1][k] + bp[i] * k;
    	}
    	using std::max;
    	int main() {
    		n = read(), m = read(), w = read();
    		for (register int i = 1; i <= n; ++i) {
    			ap[i] = read(), bp[i] = read(), as[i] = read(), bs[i] = read();
    		} 
    		memset(f, -0x7f, sizeof(f));
    		for (register int i = 0; i <= n; ++i)  f[i][0] = 0;
    		for (register int i = 1; i <= n; ++i) {
    			for (register int j = 0; j <= as[i]; ++j) f[i][j] = -ap[i] * j;
    			for (register int j = m; j >= 0; --j) f[i][j] = max(f[i][j], f[i - 1][j]);
    			if (i - w - 1 < 0) continue ;
    			head = 1, tail = 0;
    			for (register int j = 0; j <= m; ++j) {
    				while (head <= tail && que[head] < j - as[i]) head++;
    				while (head <= tail && calca(i, w, j) >= calca(i, w, que[tail])) tail--;
    				que[++tail] = j;
    				if (head <= tail) f[i][j] = max(f[i][j], calca(i, w, que[head]) - j * ap[i]);
    			}
    			head = 1, tail = 0;
    			for (register int j = m; j >= 0; --j) {
    				while (head <= tail && que[head] > j + bs[i]) head++;
    				while (head <= tail && calcb(i, w, j) >= calcb(i, w, que[tail])) tail--;
    				que[++tail] = j;
    				if (head <= tail) f[i][j] = max(f[i][j], calcb(i, w, que[head]) - j * bp[i]);
    			}			
    		}	
    		int ans = 0;	
    		for (register int i = 0; i <= m; ++i) ans = max(ans, f[n][i]);
    		printf("%d
    ", ans);
    		return 0;
    	}
    }
    int main() {
    #ifdef LOCAL
    	freopen("textname.in", "r", stdin);
    	freopen("textname.out", "w", stdout);
    #endif
    	shl::main();
    	return 0;
    }
    
  • 相关阅读:
    上传附件性能测试
    数据库优化
    电商抢购并发
    JVM gc参数设置与分析
    浅谈性能测试分析
    Linux crontab 定时任务命令详解
    Sqlserver 查询语句性能测试
    Win7 user profile service
    图像预处理
    Pytorch迁移学习
  • 原文地址:https://www.cnblogs.com/shl-blog/p/11618263.html
Copyright © 2020-2023  润新知