• 线程、进程和协程


    Python线程

    Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import threading
    import time
      
    def show(arg):
        time.sleep(1)
        print 'thread'+str(arg)
      
    for i in range(10):
        t = threading.Thread(target=show, args=(i,))
        t.start()
      
    print 'main thread stop'
    

      

    上述代码创建了10个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。

    更多方法:

      • start            线程准备就绪,等待CPU调度
      • setName      为线程设置名称
      • getName      获取线程名称
      • setDaemon   设置为后台线程或前台线程(默认)
                           如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止
                            如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
      • join              逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
      • run              线程被cpu调度后自动执行线程对象的run方法
    import threading
    import time
     
     
    class MyThread(threading.Thread):
        def __init__(self,num):
            threading.Thread.__init__(self)
            self.num = num
     
        def run(self):#定义每个线程要运行的函数
     
            print("running on number:%s" %self.num)
     
            time.sleep(3)
     
    if __name__ == '__main__':
     
        t1 = MyThread(1)
        t2 = MyThread(2)
        t1.start()
        t2.start()
    自定义线程类

    线程锁(Lock、RLock)

    由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,所以,出现了线程锁 - 同一时刻允许一个线程执行操作。

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import threading
    import time
    
    gl_num = 0
    
    def show(arg):
        global gl_num
        time.sleep(1)
        gl_num +=1
        print gl_num
    
    for i in range(10):
        t = threading.Thread(target=show, args=(i,))
        t.start()
    
    print 'main thread stop'
    未使用锁
    #!/usr/bin/env python
    #coding:utf-8
       
    import threading
    import time
       
    gl_num = 0
       
    lock = threading.RLock()
       
    def Func():
        lock.acquire()
        global gl_num
        gl_num +=1
        time.sleep(1)
        print gl_num
        lock.release()
           
    for i in range(10):
        t = threading.Thread(target=Func)
        t.start()
    

      

    信号量(Semaphore)

    互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。

    import threading,time
     
    def run(n):
        semaphore.acquire()
        time.sleep(1)
        print("run the thread: %s" %n)
        semaphore.release()
     
    if __name__ == '__main__':
     
        num= 0
        semaphore  = threading.BoundedSemaphore(5) #最多允许5个线程同时运行
        for i in range(20):
            t = threading.Thread(target=run,args=(i,))
            t.start()
    

      

    事件(event)

    python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。

    事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。

    • clear:将“Flag”设置为False
    • set:将“Flag”设置为True
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
     
    import threading
     
     
    def do(event):
        print 'start'
        event.wait()
        print 'execute'
     
     
    event_obj = threading.Event()
    for i in range(10):
        t = threading.Thread(target=do, args=(event_obj,))
        t.start()
     
    event_obj.clear()
    inp = raw_input('input:')
    if inp == 'true':
        event_obj.set()
    

      

    条件(Condition)

    使得线程等待,只有满足某条件时,才释放n个线程

    import threading
     
    def run(n):
        con.acquire()
        con.wait()
        print("run the thread: %s" %n)
        con.release()
     
    if __name__ == '__main__':
     
        con = threading.Condition()
        for i in range(10):
            t = threading.Thread(target=run, args=(i,))
            t.start()
     
        while True:
            inp = input('>>>')
            if inp == 'q':
                break
            con.acquire()
            con.notify(int(inp))
            con.release()
    

      

    def condition_func():
    
        ret = False
        inp = input('>>>')
        if inp == '1':
            ret = True
    
        return ret
    
    
    def run(n):
        con.acquire()
        con.wait_for(condition_func)
        print("run the thread: %s" %n)
        con.release()
    
    if __name__ == '__main__':
    
        con = threading.Condition()
        for i in range(10):
            t = threading.Thread(target=run, args=(i,))
            t.start()

    Timer

    定时器,指定n秒后执行某操作

    from threading import Timer
     
     
    def hello():
        print("hello, world")
     
    t = Timer(1, hello)
    t.start()  # after 1 seconds, "hello, world" will be printed

    Python 进程

    from multiprocessing import Process
    import threading
    import time
      
    def foo(i):
        print 'say hi',i
      
    for i in range(10):
        p = Process(target=foo,args=(i,))
        p.start()
    

      

    注意:由于进程之间的数据需要各自持有一份,所以创建进程需要的非常大的开销。

    进程数据共享

    进程各自持有一份数据,默认无法共享数据

    #!/usr/bin/env python
    #coding:utf-8
     
    from multiprocessing import Process
    from multiprocessing import Manager
     
    import time
     
    li = []
     
    def foo(i):
        li.append(i)
        print 'say hi',li
      
    for i in range(10):
        p = Process(target=foo,args=(i,))
        p.start()
         
    print 'ending',li
    #方法一,Array
    from multiprocessing import Process,Array
    temp = Array('i', [11,22,33,44])
     
    def Foo(i):
        temp[i] = 100+i
        for item in temp:
            print i,'----->',item
     
    for i in range(2):
        p = Process(target=Foo,args=(i,))
        p.start()
     
    #方法二:manage.dict()共享数据
    from multiprocessing import Process,Manager
     
    manage = Manager()
    dic = manage.dict()
     
    def Foo(i):
        dic[i] = 100+i
        print dic.values()
     
    for i in range(2):
        p = Process(target=Foo,args=(i,))
        p.start()
        p.join()
    

      

    'c': ctypes.c_char,  'u': ctypes.c_wchar,
        'b': ctypes.c_byte,  'B': ctypes.c_ubyte,
        'h': ctypes.c_short, 'H': ctypes.c_ushort,
        'i': ctypes.c_int,   'I': ctypes.c_uint,
        'l': ctypes.c_long,  'L': ctypes.c_ulong,
        'f': ctypes.c_float, 'd': ctypes.c_double
    类型对应表
    from multiprocessing import Process, Queue
    
    def f(i,q):
        print(i,q.get())
    
    if __name__ == '__main__':
        q = Queue()
    
        q.put("h1")
        q.put("h2")
        q.put("h3")
    
        for i in range(10):
            p = Process(target=f, args=(i,q,))
            p.start()
    Code

    当创建进程时(非使用时),共享数据会被拿到子进程中,当进程中执行完毕后,再赋值给原值。

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    
    from multiprocessing import Process, Array, RLock
    
    def Foo(lock,temp,i):
        """
        将第0个数加100
        """
        lock.acquire()
        temp[0] = 100+i
        for item in temp:
            print i,'----->',item
        lock.release()
    
    lock = RLock()
    temp = Array('i', [11, 22, 33, 44])
    
    for i in range(20):
        p = Process(target=Foo,args=(lock,temp,i,))
        p.start()
    进程锁实例

    进程池

    进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。

    进程池中有两个方法:

    • apply
    • apply_async
      #!/usr/bin/env python
      # -*- coding:utf-8 -*-
      from  multiprocessing import Process,Pool
      import time
        
      def Foo(i):
          time.sleep(2)
          return i+100
        
      def Bar(arg):
          print arg
        
      pool = Pool(5)
      #print pool.apply(Foo,(1,))
      #print pool.apply_async(func =Foo, args=(1,)).get()
        
      for i in range(10):
          pool.apply_async(func=Foo, args=(i,),callback=Bar)
        
      print 'end'
      pool.close()
      pool.join()#进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。
      

        

      协程

      线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。

      协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。

      协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;

      greenlet

      #!/usr/bin/env python
      # -*- coding:utf-8 -*-
       
       
      from greenlet import greenlet
       
       
      def test1():
          print 12
          gr2.switch()
          print 34
          gr2.switch()
       
       
      def test2():
          print 56
          gr1.switch()
          print 78
       
      gr1 = greenlet(test1)
      gr2 = greenlet(test2)
      gr1.switch()

      gevent

      import gevent
       
      def foo():
          print('Running in foo')
          gevent.sleep(0)
          print('Explicit context switch to foo again')
       
      def bar():
          print('Explicit context to bar')
          gevent.sleep(0)
          print('Implicit context switch back to bar')
       
      gevent.joinall([
          gevent.spawn(foo),
          gevent.spawn(bar),
      ])
      

        遇到IO操作自动切换:

      from gevent import monkey; monkey.patch_all()
      import gevent
      import urllib2
      
      def f(url):
          print('GET: %s' % url)
          resp = urllib2.urlopen(url)
          data = resp.read()
          print('%d bytes received from %s.' % (len(data), url))
      
      gevent.joinall([
              gevent.spawn(f, 'https://www.python.org/'),
              gevent.spawn(f, 'https://www.yahoo.com/'),
              gevent.spawn(f, 'https://github.com/'),
      ])
      View Code
  • 相关阅读:
    POJ3984-迷宫问题【BFS】
    BFS与DFS模板
    nyoj27-水池数目【DFS】
    C++ STL-stack使用详解
    C++ STL
    HDU1058
    HDU1114
    HDU1867
    Codeforces Round #461 (Div. 2) D. Robot Vacuum Cleaner
    Codeforces Round #461 (Div. 2) C. Cave Painting
  • 原文地址:https://www.cnblogs.com/shizhengwen/p/6574870.html
Copyright © 2020-2023  润新知