• 再学斐波那契数列


            递归算法在实际应用中司空见惯,斐波那契数列是具体体现之一,递归算法是基本技能,今天是周六,再动一下大脑~

         F1:迭代法,F2:直接法,F3矩阵法,F4:通项公式

    using System;
    using System.Diagnostics;
    
    
    namespace Fibonacci
    {
        class Program
        {
            static void Main(string[] args)
            {
                ulong result;
    
                int number = 10;
                Console.WriteLine("************* number={0} *************", number);
    
                Stopwatch watch1 = new Stopwatch();
                watch1.Start();
                result = F1(number);
                watch1.Stop();
                Console.WriteLine("F1({0})=" + result + "  耗时:" + watch1.Elapsed, number);
    
                Stopwatch watch2 = new Stopwatch();
                watch2.Start();
                result = F2(number);
                watch2.Stop();
                Console.WriteLine("F2({0})=" + result + "  耗时:" + watch2.Elapsed, number);
    
                Stopwatch watch3 = new Stopwatch();
                watch3.Start();
                result = F3(number);
                watch3.Stop();
                Console.WriteLine("F3({0})=" + result + "  耗时:" + watch3.Elapsed, number);
    
                Stopwatch watch4 = new Stopwatch();
                watch4.Start();
                double result4 = F4(number);
                watch4.Stop();
                Console.WriteLine("F4({0})=" + result4 + "  耗时:" + watch4.Elapsed, number);
    
                Console.WriteLine();
    
                Console.WriteLine("结束");
                Console.ReadKey();
            }
    
            /// <summary>
            /// 迭代法
            /// </summary>
            /// <param name="number"></param>
            /// <returns></returns>
            private static ulong F1(int number)
            {
                if (number == 1 || number == 2)
                {
                    return 1;
                }
                else
                {
                    return F1(number - 1) + F1(number - 2);
                }
                
            }
    
            /// <summary>
            /// 直接法
            /// </summary>
            /// <param name="number"></param>
            /// <returns></returns>
            private static ulong F2(int number)
            {
                ulong a = 1, b = 1;
                if (number == 1 || number == 2)
                {
                    return 1;
                }
                else
                {
                    for (int i = 3; i <= number; i++)
                    {
                        ulong c = a + b;
                        b = a;
                        a = c;
                    }
                    return a;
                }
            }
    
            /// <summary>
            /// 矩阵法
            /// </summary>
            /// <param name="n"></param>
            /// <returns></returns>
            static ulong F3(int n)
            {
                ulong[,] a = new ulong[2, 2] { { 1, 1 }, { 1, 0 } };
                ulong[,] b = MatirxPower(a, n);
                return b[1, 0];
            }
    
            #region F3
            static ulong[,] MatirxPower(ulong[,] a, int n)
            {
                if (n == 1) { return a; }
                else if (n == 2) { return MatirxMultiplication(a, a); }
                else if (n % 2 == 0)
                {
                    ulong[,] temp = MatirxPower(a, n / 2);
                    return MatirxMultiplication(temp, temp);
                }
                else
                {
                    ulong[,] temp = MatirxPower(a, n / 2);
                    return MatirxMultiplication(MatirxMultiplication(temp, temp), a);
                }
            }
    
            static ulong[,] MatirxMultiplication(ulong[,] a, ulong[,] b)
            {
                ulong[,] c = new ulong[2, 2];
                for (int i = 0; i < 2; i++)
                {
                    for (int j = 0; j < 2; j++)
                    {
                        for (int k = 0; k < 2; k++)
                        {
                            c[i, j] += a[i, k] * b[k, j];
                        }
                    }
                }
                return c;
            }
            #endregion
    
            /// <summary>
            /// 通项公式法
            /// </summary>
            /// <param name="n"></param>
            /// <returns></returns>
            static double F4(int n)
            {
                double sqrt5 = Math.Sqrt(5);
                return (1/sqrt5*(Math.Pow((1+sqrt5)/2,n)-Math.Pow((1-sqrt5)/2,n)));
            }
        }
    }

     

  • 相关阅读:
    打造分布式爬虫
    vue入门-常用指令操作
    爬虫练习-爬取小说
    爬虫项目-爬取亚马逊商品信息
    爬虫框架_scrapy1
    CIE-LUV是什么颜色特征
    多目标跟踪baseline methods
    时间序列识别代码调试版本1
    拓扑空间1
    ps cs6破解
  • 原文地址:https://www.cnblogs.com/shiningleo007/p/12541382.html
Copyright © 2020-2023  润新知