Problem Description
This is a simple problem. Given two triangles A and B, you should determine they are intersect, contain or disjoint. (Public edge or point are treated as intersect.)
Input
First line contains an integer T (1 ≤ T ≤ 10), represents there are T test cases.
For each test case: X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6. All the coordinate are integer. (X1,Y1) , (X2,Y2), (X3,Y3) forms triangles A ; (X4,Y4) , (X5,Y5), (X6,Y6) forms triangles B.
-10000<=All the coordinate <=10000
Output
For each test case, output “intersect”, “contain” or “disjoint”.
Sample Input
2 0 0 0 1 1 0 10 10 9 9 9 10 0 0 1 1 1 0 0 0 1 1 0 1
Sample Output
disjoint
intersect
判断两个三角形是 相交,包含,还是相离的关系
包含关系:
如图:若ΔDEF被包含;则可通过点来判断
D点被包含SΔACD+SΔCDB+SΔADB=SΔABC 同理判断E、F点,若三点全满足则包含
相离关系:
如图:若D点在外:则有SΔDAC+SΔDBC+SΔAB>SΔABC
若三点都满足上式,则相离,剩下的就只有相交关系了。
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> #include <vector> #include <iomanip> #include <cmath> #include <ctime> #include <map> #include <set> using namespace std; #define lowbit(x) (x&(-x)) #define max(x,y) (x>y?x:y) #define min(x,y) (x<y?x:y) #define MAX 100000000000000000 #define MOD 1000000007 #define pi acos(-1.0) #define ei exp(1) #define PI 3.141592653589793238462 #define INF 0x3f3f3f3f3f #define mem(a) (memset(a,0,sizeof(a))) typedef long long ll; int t,ans; struct point { double x; double y; }; struct trangle { point p[3]; }angle[2]; double area(point a,point b,point c) { return fabs((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));//三角形面积 } bool check(trangle a,trangle b) { double area_trangle=area(a.p[0],a.p[1],a.p[2]);//判断是否包含和不相交 int pos=0; for(int i=0;i<3;i++) { if((area(b.p[i],a.p[0],a.p[1])+area(b.p[i],a.p[1],a.p[2])+area(b.p[i],a.p[0],a.p[2]))>area_trangle) continue; else ans++,pos++; } return pos==3; } void solve() { ans=0; if(check(angle[0],angle[1]) || check(angle[1],angle[0])) { puts("contain"); return ; } else if(!ans) { puts("disjoint"); return ; } else { puts("intersect"); return ; } } int main() { scanf("%d",&t); while(t--) { for(int i=0;i<2;i++) { for(int j=0;j<3;j++) { scanf("%lf%lf",&angle[i].p[j].x,&angle[i].p[j].y); } } solve(); } return 0; }