DESCRIPTION
There are nn buildings lined up, and the height of the ii-th house is hihi.
An inteval [l,r][l,r](l≤r)(l≤r) is harmonious if and only if max(hl,…,hr)−min(hl,…,hr)≤kmax(hl,…,hr)−min(hl,…,hr)≤k.
Now you need to calculate the number of harmonious intevals.
INPUT
The first line contains two integers n(1≤n≤2×105),k(0≤k≤109)n(1≤n≤2×105),k(0≤k≤109). The second line contains nn integers hi(1≤hi≤109)hi(1≤hi≤109).
OUTPUT
Print a line of one number which means the answer.
SAMPLE INPUT
3 1 1 2 3
SAMPLE OUTPUT
5
HINT
Harmonious intervals are: [1,1],[2,2],[3,3],[1,2],[2,3][1,1],[2,2],[3,3],[1,2],[2,3].
RMQ+二分
//Round 19 B; #include <iostream> #include <algorithm> #include <cstring> #include <cstdio> #include <vector> #include <queue> #include <cstdlib> #include <iomanip> #include <cmath> #include <ctime> #include <map> #include <set> using namespace std; #define lowbit(x) (x&(-x)) #define max(x,y) (x>y?x:y) #define min(x,y) (x<y?x:y) #define MAX 100000000000000000 #define MOD 1000000007 #define pi acos(-1.0) #define ei exp(1) #define PI 3.141592653589793238462 #define INF 0x3f3f3f3f3f #define mem(a) (memset(a,0,sizeof(a))) typedef long long ll; int maxn[200005][25],minn[200005][25]; int a[200005]; int n,k,x; void get_rmq() { for(int i=1;i<=n;i++) { maxn[i][0]=a[i]; minn[i][0]=a[i]; } for(int j=1;(1<<j)<=n;j++) { for(int i=1;i+(1<<j)-1<=n;i++) { maxn[i][j]=max(maxn[i][j-1],maxn[i+(1<<(j-1))][j-1]); minn[i][j]=min(minn[i][j-1],minn[i+(1<<(j-1))][j-1]); } } } bool rmq(int l,int r) { if(l>r) return 0; int f=int(log((double)(r-l+1))/log(2.0)); return max(maxn[l][f],maxn[r-(1<<f)+1][f])-min(minn[l][f],minn[r-(1<<f)+1][f])<=k; } int main() { scanf("%d%d",&n,&k); for(int i=1;i<=n;i++) { scanf("%d",&a[i]); } get_rmq(); ll ans=0; for(int i=1;i<=n;i++) { int l=1,r=i,mid,pos=i; while(l<=r) { mid=(l+r)>>1; if(rmq(mid,i)) r=mid-1,pos=mid; else l=mid+1; } ans+=i-pos+1; } printf("%lld ",ans); return 0; }