• 直观理解神经网络最后一层全连接+Softmax


    博客:blog.shinelee.me | 博客园 | CSDN

    写在前面

    这篇文章将从3个角度:加权模版匹配几何来理解最后一层全连接+Softmax。掌握了这3种视角,可以更好地理解深度学习中的正则项、参数可视化以及一些损失函数背后的设计思想。

    全连接层与Softmax回顾

    深度神经网络的最后一层往往是全连接层+Softmax(分类网络),如下图所示,图片来自StackExchange

    FlFUSJ.png

    先看一下计算方式全连接层将权重矩阵与输入向量相乘再加上偏置,将(n)((-infty, +infty))的实数映射为(K)((-infty, +infty))的实数(分数);Softmax(K)((-infty, +infty))的实数映射为(K)((0, 1))的实数(概率),同时保证它们之和为1。具体如下:

    [hat{mathrm{y}} = softmax(mathrm{z}) = softmax(mathrm{W}^{T} mathrm{x} + mathrm{b}) ]

    其中,(mathrm{x}) 为全连接层的输入,(W_{n imes K}) 为权重,(mathrm{b})为偏置项,(hat{mathrm{y}})为Softmax输出的概率,Softmax的计算方式如下:

    [softmax(z_j) = frac{e^{z_j}}{sum_K e^{z_j}} ]

    若拆成每个类别的概率如下:

    [hat{y_j} = softmax(z_j) = softmax(mathrm{w}_{j} cdot mathrm{x} + b_j) ]

    其中,(mathrm{w}_{j})为图中全连接层同一颜色权重组成的向量。

    该如何理解?

    下面提供3个理解角度:加权角度模版匹配角度几何角度

    加权角度

    加权角度可能是最直接的理解角度。

    通常将网络最后一个全连接层的输入,即上面的(mathrm{x}),视为网络从输入数据提取到的特征

    [z_j = mathrm{w}_{j} cdot mathrm{x} + b_j = w_{j1} x_1 + w_{j2} x_2 + dots + w_{jn} x_n + b_j ]

    (mathrm{w}_{j})视为第(j)类下特征的权重,即每维特征的重要程度、对最终分数的影响程度,通过对特征加权求和得到每个类别的分数,再经过Softmax映射为概率。

    模板匹配

    也可以将(mathrm{w}_{j})视为第(j)类的特征模板,特征与每个类别的模板进行模版匹配,得到与每个类别的相似程度,然后通过Softmax将相似程度映射为概率。如下图所示,图片素材来自CS231n

    FC template matching

    如果是只有一个全连接层的神经网络(相当于线性分类器),将每个类别的模板可以直接可视化如下,图片素材来自CS231n。

    FC template

    如果是多层神经网络,最后一个全连接层的模板是特征空间的模板,可视化需要映射回输入空间。

    几何角度

    仍将全连接层的输入(mathrm{x})视为网络从输入数据提取到的特征,一个特征对应多维空间中的一个点。

    如果是二分类问题,使用线性分类器(hat{y} = mathrm{w} cdot mathrm{x} + b),若(hat{y}>0)即位于超平面的上方,则为正类,(hat{y}<0)则为负类。

    多分类怎么办?为每个类别设置一个超平面,通过多个超平面对特征空间进行划分,一个区域对应一个类别。(mathrm{w}_{j})为每个超平面的法向量,指向正值的方向,超平面上分数为0,如果求特征与每个超平面间的距离(带正负)为

    [d_j = frac{mathrm{w}_{j} cdot mathrm{x} + b_j}{||mathrm{w}_{j}||} ]

    而分数(z_j = ||mathrm{w}_{j}|| d_j),再进一步通过Softmax映射为概率。

    如下图所示:

    F1GLb6.png

    Softmax的作用

    相比((-infty, +infty))范围内的分数,概率天然具有更好的可解释性,让后续取阈值等操作顺理成章。

    经过全连接层,我们获得了(K)个类别((-infty, +infty))范围内的分数(z_j),为了得到属于每个类别的概率,先通过(e^{z_j})将分数映射到((0, +infty)),然后再归一化到((0 ,1)),这便是Softmax的思想:

    [hat{y_j} = softmax(z_j) = frac{e^{z_j}}{sum_K e^{z_j}} ]

    总结

    本文介绍了3种角度来更直观地理解全连接层+Softmax,

    • 加权角度,将权重视为每维特征的重要程度,可以帮助理解L1、L2等正则项
    • 模板匹配角度,可以帮助理解参数的可视化
    • 几何角度,将特征视为多维空间中的点,可以帮助理解一些损失函数背后的设计思想(希望不同类的点具有何种性质)

    视角不同,看到的画面就不同,就会萌生不同的idea。有些时候,换换视角问题就迎刃而解了。

    以上。

    参考

  • 相关阅读:
    RadGrid Expand/Collapse on Row click
    AutoComplete Textbox with Additional Parameters From Database
    Combobox.Items中添加项Items
    JavaScript 处理字符串(操作字符串)
    用nettiers + svn + resharper + rad + ccNet开发前的准备工作
    Document.location.href和.replace的区别
    .net remoting的事务传播以及wcf分布式事务
    IDA反汇编/反编译静态分析iOS模拟器程序(三)函数表示与搜索函数
    [置顶] 一道有趣的逻辑题
    mini2440uboot移植基本操作指令
  • 原文地址:https://www.cnblogs.com/shine-lee/p/10077961.html
Copyright © 2020-2023  润新知