• Alias Method for Sampling 采样方法


     【Alias Method for Sampling】原理

       对于处理离散分布的随机变量的取样问题,Alias Method for Sampling 是一种很高效的方式。

       在初始好之后,每次取样的复杂度为 O(1)。 

       、、、

    【Python 代码】

    # !/usr/bin/env python
    # encoding: utf-8
    __author__ = 'ScarlettZero'
    
    # 20180522
    # AliasMethod Sampling
    
    import time
    import numpy as np
    import pandas as pd
    import numpy.random as npr
    
    def alias_setup(probs):
        '''
    
        :param probs: 某个概率分布
        :return: Alias数组与Prob数组
        '''
        K =len(probs) # K为类别数目
        Prob =np.zeros(K) # 对应Prob数组:落在原类型的概率
        Alias =np.zeros(K,dtype=np.int) # 对应Alias数组:每一列第二层的类型
    
        #Sort the data into the outcomes with probabilities
        #that are larger and smaller than 1/K
        smaller =[] # 存储比1小的列
        larger =[] # 存储比1大的列
    
        for kk,prob in enumerate(probs):
            Prob[kk] =K*prob # 概率(每个类别概率乘以K,使得总和为K)
            if Prob[kk] <1.0: # 然后分为两类:大于1的和小于1的
                smaller.append(kk)
            else:
                larger.append(kk)
    
        # Loop though and create little binary mixtures that appropriately allocate
        # the larger outcomes over the overall uniform mixture.
    
        #通过拼凑,将各个类别都凑为1
        while len(smaller) > 0 and len(larger) > 0:
            small = smaller.pop()
            large = larger.pop()
    
            Alias[small] = large #填充Alias数组
            Prob[large] = Prob[large]-(1.0 - Prob[small]) #将大的分到小的上
    
            if Prob[large] <1.0:
                smaller.append(large)
            else:
                larger.append(large)
        print("Prob is :", Prob)
        print("Alias is :", Alias)
        return Alias,Prob
    
    def alias_draw(Alias,Prob):
        '''
        :param J: Alias数组
        :param q: Prob数组
        :return:一次采样结果
        '''
        K=len(Alias)
    
        # Draw from the overall uniform mixture.
        kk = int(np.floor(npr.rand()*K)) #随机取一列
    
        # Draw from the binary mixture, either keeping the small one, or choosing the associated larger one.
        # 采样过程:随机取某一列k(即[1,4]的随机整数,再随机产生一个[0-1]的小数c,)
        # 如果Prob[kk]大于c,
        if npr.rand() <Prob[kk]: #比较
            return kk
        else:
            return Alias[kk]
    
    if __name__ == '__main__':
        start=time.time()
    
        K = 5  # K初始化为5类
        N = 5
    
        # Get a random probability vector.
        # probs = npr.dirichlet(np.ones(K), 1).ravel()  # .ravel(): 将多维数组降为一维
        probs =[0.2,0.3,0.1,0.2,0.2]
        # Construct the table
        Alias, Prob = alias_setup(probs)
    
        # Prob is : [ 0.25058826  0.69258202  0.83010441  0.87901003  1.        ]
        # Alias is : [4 4 4 4 0]
        ######
    
        # Generate variates.
        # X 为有多少样本需要采样
        X = np.zeros(N)
        for nn in range(N):
            X[nn] = alias_draw(Alias, Prob)
        print("最终的采样结果X为:",X)
    
        end=time.time()
        spend=end-start
        print("耗时为:%0.4f s"%spend)
    
        sure_k = np.random.choice(5, 1, p=probs)
        print("surek为:",sure_k)
        # 关于SEM的并行,我先尝试了在 sample k 的时候使用Alias Method,但是和之前比效率方面没见得有提升(之前SEM是利用  sure_k = np.random.choice(aspects_num, 1, p=p) 进行sample k的)
        # Alias必须是多次采样才有效率上的提升的。如果每一次sample都新来一次alias那是没有用的

    运行结果:

    【Reference】

    1、Alias Method离散分布随机取样

    2、The Alias Method: Efficient Sampling with Many Discrete Outcomes

  • 相关阅读:
    解决Metasploit中shell乱码的问题
    AWVS扫描器的用法
    AWVS扫描器的用法
    AppScan扫描器的用法
    AppScan扫描器的用法
    Nessus扫描器的使用
    IPC$共享和其他共享(C$、D$)
    IPC$共享和其他共享(C$、D$)
    Windows中动态磁盘管理
    Windows中动态磁盘管理
  • 原文地址:https://www.cnblogs.com/shenxiaolin/p/9097478.html
Copyright © 2020-2023  润新知