• 『题解』UVa11324 The Largest Clique


    原文地址

    Problem Portal

    Portal1:UVa

    Portal2:Luogu

    Portal3:Vjudge

    Description

    Given a directed graph ( ext{G}), consider the following transformation.
    First, create a new graph ( ext{T(G)}) to have the same vertex set as ( ext{G}). Create a directed edge between two vertices u and v in ( ext{T(G)}) if and only if there is a path between u and v in ( ext{G}) that follows the directed edges only in the forward direction. This graph ( ext{T(G)}) is often called the ( exttt{transitive closure}) of ( ext{G}).

    We define a ( exttt{clique}) in a directed graph as a set of vertices ( ext{U}) such that for any two vertices u and v in ( ext{U}), there is a directed edge either from u to v or from v to u (or both). The size of a clique is the number of vertices in the clique.

    Input

    The number of cases is given on the first line of input. Each test case describes a graph ( ext{G}). It begins with a line of two integers (n) and (m), where (0 leq n leq 1000) is the number of vertices of ( ext{G}) and (0 leq m leq 50, 000) is the number of directed edges of ( ext{G}). The vertices of ( ext{G}) are numbered from (1) to (n). The following (m) lines contain two distinct integers (u) and (v) between (1) and (n) which define a directed edge from (u) to (v) in ( ext{G}).

    Output

    For each test case, output a single integer that is the size of the largest clique in ( ext{T(G)}).

    Sample Input

    1
    5 5
    1 2
    2 3
    3 1
    4 1
    5 2
    

    Sample Output

    4
    

    Chinese Description

    给你一张有向图( ext{G}),求一个结点数最大的结点集,使得该结点集中的任意两个结点 (u)(v) 满足:要么 (u) 可以达 (v),要么 (v) 可以达 (u)(u), (v)相互可达也行)。

    Solution

    Tarjan缩点(+)记忆化搜索。

    Source

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    
    using namespace std;
    
    const int MAXN=200005;
    struct node {
        int to, nxt;
    } edge[MAXN];
    int T, n, m, u, v, num, cnt, top, tot, ans, head[MAXN], DFN[MAXN], LOW[MAXN], sum[MAXN], vis[MAXN], sum1[MAXN], stack[MAXN], belong[MAXN];
    inline void addedge(int u, int v) {//前向星存图
        edge[num].to=v; edge[num].nxt=head[u]; head[u]=num; num++;
    }
    inline void init() {//初始化
        num=cnt=top=tot=ans=0;
        memset(head, -1, sizeof(head));
        memset(DFN, 0, sizeof(DFN));
        memset(LOW, 0, sizeof(LOW));
        memset(vis, 0, sizeof(vis));
        memset(sum, 0, sizeof(sum));
        memset(sum1, -1, sizeof(sum1));
    }
    inline void tarjan(int u) {//Tarjan缩点
        vis[u]=1;
        stack[++top]=u;
        DFN[u]=++cnt;
        LOW[u]=cnt;
        for (int i=head[u]; ~i; i=edge[i].nxt) {
            int v=edge[i].to;
            if (!DFN[v]) {
                tarjan(v);
                LOW[u]=min(LOW[u], LOW[v]);
            } else
            if (vis[v]) LOW[u]=min(LOW[u], DFN[v]);
        }
        if (DFN[u]==LOW[u]) {
            tot++;
            while (stack[top]!=u) {
                vis[stack[top]]=0;
                belong[stack[top]]=tot;
                sum[tot]++;
                top--;
            }
            vis[stack[top]]=0;
            belong[stack[top]]=tot;
            top--;
            sum[tot]++;
        }
    }
    inline int dfs(int u) {//记忆化搜索
        if (sum1[u]!=-1) return sum1[u];
        sum1[u]=sum[u];
        int addd=0;
        for (int i=1; i<=n; i++) {
            if (belong[i]==u) {
                for (int j=head[i]; ~j; j=edge[j].nxt) {
                    int v=edge[j].to, s1=belong[v];
                    if (u==s1) continue;
                    addd=max(addd, dfs(s1));
                }
            }
        }
        return sum1[u]+=addd;
    }
    int main() {
        scanf("%d",&T);
        while (T--) {
            scanf("%d%d",&n, &m);
            init();
            for (int i=1; i<=m; i++) {
                scanf("%d%d",&u, &v);
                addedge(u, v);
            }
            for (int i=1; i<=n; i++)
                if (!DFN[i]) tarjan(i);
            for (int i=1; i<=tot; i++)
                ans=max(ans, dfs(i));//寻找最大值
            printf("%d
    ",ans);//输出
        }
        return 0;
    }
    
  • 相关阅读:
    (转) Linux中profile、bashrc、bash_profile之间的区别和联系
    Ubuntu 安装MyEclipse10
    VMware_ubuntu设置共享文件夹
    (转载)Android出现“Read-only file system”解决办法
    Android 执行 adb shell 命令
    android传感器使用
    Android源码下载和编译过程
    jquery实现的ajax
    转载SQL_trace 和10046使用
    查看Oracle相关日志 ADRCI
  • 原文地址:https://www.cnblogs.com/shenxiaohuang/p/10433389.html
Copyright © 2020-2023  润新知