• Harmonic Number(调和级数+欧拉常数)


    题意:求f(n)=1/1+1/2+1/3+1/4…1/n   (1 ≤ n ≤ 108).,精确到10-8    (原题在文末)

    知识点:

         调和级数(即f(n))至今没有一个完全正确的公式,但欧拉给出过一个近似公式:(n很大时)

          f(n)ln(n)+C+1/2*n    

          欧拉常数值:C≈0.57721566490153286060651209

          c++ math库中,log即为ln。

     

    题解:

    公式:f(n)=ln(n)+C+1/(2*n);

    n很小时直接求,此时公式不是很准。

     

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    using namespace std;
    const double r=0.57721566490153286060651209;     //欧拉常数
    double a[10000];
    
    int main()
    {
        a[1]=1;
        for (int i=2;i<10000;i++)
        {
            a[i]=a[i-1]+1.0/i;
        }
        int n;
        cin>>n;
        for (int kase=1;kase<=n;kase++)
        {
            int n;
            cin>>n;
            if (n<10000)
            {
                printf("Case %d: %.10lf
    ",kase,a[n]);
            }
            else
            {
                double a=log(n)+r+1.0/(2*n);
                //double a=log(n+1)+r;
                printf("Case %d: %.10lf
    ",kase,a);
            }
        }
        return 0;
    }

    其实可以打表水过,毕竟公式记不住是硬伤啊。。

    10e8全打表必定MLE,而每40个数记录一个结果,即分别记录1/40,1/80,1/120,...,1/10e8,这样对于输入的每个n,最多只需执行39次运算,大大节省了时间,空间上也够了。

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    
    using namespace std;
    
    const int maxn = 2500001;
    double a[maxn] = {0.0, 1.0};
    
    int main()
    {
        int t, n, ca = 1;
        double s = 1.0;
        for(int i = 2; i < 100000001; i++)
        {
            s += (1.0 / i);
            if(i % 40 == 0) a[i/40] = s;
        }
        scanf("%d", &t);
        while(t--)
        {
            scanf("%d", &n);
            int x = n / 40;
            s = a[x];
            for(int i = 40 * x + 1; i <= n; i++) s += (1.0 / i);
            printf("Case %d: %.10lf
    ", ca++, s);
        }
        return 0;
    }

    Harmonic Number

    Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

    Submit Status

    Description

    In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:

     

    Hn=1/1+1/2+1/3+1/4…1/n

     

    In this problem, you are given n, you have to find Hn.

    Input

    Input starts with an integer T (≤ 10000), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 108).

    Output

    For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.

    Sample Input

    12

    1

    2

    3

    4

    5

    6

    7

    8

    9

    90000000

    99999999

    100000000

    Sample Output

    Case 1: 1

    Case 2: 1.5

    Case 3: 1.8333333333

    Case 4: 2.0833333333

    Case 5: 2.2833333333

    Case 6: 2.450

    Case 7: 2.5928571429

    Case 8: 2.7178571429

    Case 9: 2.8289682540

    Case 10: 18.8925358988

    Case 11: 18.9978964039

    Case 12: 18.9978964139

  • 相关阅读:
    未能写入输出文件..”“拒绝访问。”的解决办法
    SecureCRT显示中文和语法高亮
    危险无处不在 Html标签带来的安全隐患(转载)
    具有负载均衡功能的MySQL服务器集群部署及实现
    Linux以及各大发行版介绍
    yum源 redis 设置
    freebsd+apache+mysql+php+phpmyadmin+zend+discuz傻瓜式教程
    VS2005无法切换到设计视图的解决方案
    IIS不能下载EXE的解决方法
    JQuery优秀插件征集
  • 原文地址:https://www.cnblogs.com/shentr/p/5296462.html
Copyright © 2020-2023  润新知