• Pytorch1.0入门实战一:LeNet神经网络实现 MNIST手写数字识别


    记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了。自从接触pytorch以来,一直想写点什么。曾经在2017年5月,Andrej Karpathy发表的一篇Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved。确实,使用pytorch以来,确实感觉心情要好多了,不像TensorFlow那样晦涩难懂。迫不及待的用pytorch实战了一把MNIST数据集,构建LeNet神经网络。话不多说,直接上代码!

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torchvision import datasets,transforms
    import torchvision
    from torch.autograd import Variable
    from torch.utils.data import DataLoader
    import cv2
    
    class LeNet(nn.Module):
        def __init__(self):
            super(LeNet, self).__init__()
            self.conv1 = nn.Sequential(
                nn.Conv2d(1, 6, 3, 1, 2),
                nn.ReLU(),
                nn.MaxPool2d(2, 2)
            )
    
            self.conv2 = nn.Sequential(
                nn.Conv2d(6, 16, 5),
                nn.ReLU(),
                nn.MaxPool2d(2, 2)
            )
    
            self.fc1 = nn.Sequential(
                nn.Linear(16 * 5 * 5, 120),
                nn.BatchNorm1d(120),
                nn.ReLU()
            )
    
            self.fc2 = nn.Sequential(
                nn.Linear(120, 84),
                nn.BatchNorm1d(84),#加快收敛速度的方法(注:批标准化一般放在全连接层后面,激活函数层的前面)
                nn.ReLU()
            )
    
            self.fc3 = nn.Linear(84, 10)
    
        #         self.sfx = nn.Softmax()
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)
            #         print(x.shape)
            x = x.view(x.size()[0], -1)
            x = self.fc1(x)
            x = self.fc2(x)
            x = self.fc3(x)
            #         x = self.sfx(x)
            return x
    
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    batch_size = 64
    LR = 0.001
    Momentum = 0.9
    
    # 下载数据集
    train_dataset = datasets.MNIST(root = './data/',
                                  train=True,
                                  transform = transforms.ToTensor(),
                                  download=False)
    test_dataset =datasets.MNIST(root = './data/',
                                train=False,
                                transform=transforms.ToTensor(),
                                download=False)
    #建立一个数据迭代器
    train_loader = torch.utils.data.DataLoader(dataset = train_dataset,
                                              batch_size = batch_size,
                                              shuffle = True)
    test_loader = torch.utils.data.DataLoader(dataset = test_dataset,
                                             batch_size = batch_size,
                                             shuffle = False)
    
    #实现单张图片可视化
    # images,labels = next(iter(train_loader))
    # img  = torchvision.utils.make_grid(images)
    # img = img.numpy().transpose(1,2,0)
    # # img.shape
    # std = [0.5,0.5,0.5]
    # mean = [0.5,0.5,0.5]
    # img = img*std +mean
    # cv2.imshow('win',img)
    # key_pressed = cv2.waitKey(0)
    
    net = LeNet().to(device)
    criterion = nn.CrossEntropyLoss()#定义损失函数
    optimizer = optim.SGD(net.parameters(),lr=LR,momentum=Momentum)
    
    epoch = 1
    if __name__ == '__main__':
        for epoch in range(epoch):
            sum_loss = 0.0
            for i, data in enumerate(train_loader):
                inputs, labels = data
                inputs, labels = Variable(inputs).cuda(), Variable(labels).cuda()
                optimizer.zero_grad()#将梯度归零
                outputs = net(inputs)#将数据传入网络进行前向运算
                loss = criterion(outputs, labels)#得到损失函数
                loss.backward()#反向传播
                optimizer.step()#通过梯度做一步参数更新
    
                # print(loss)
                sum_loss += loss.item()
                if i % 100 == 99:
                    print('[%d,%d] loss:%.03f' % (epoch + 1, i + 1, sum_loss / 100))
                    sum_loss = 0.0
    
        #验证测试集
        net.eval()#将模型变换为测试模式
        correct = 0
        total = 0
        for data_test in test_loader:
            images, labels = data_test
            images, labels = Variable(images).cuda(), Variable(labels).cuda()
            output_test = net(images)
            # print("output_test:",output_test.shape)
    
            _, predicted = torch.max(output_test, 1)#此处的predicted获取的是最大值的下标
            # print("predicted:",predicted.shape)
            total += labels.size(0)
            correct += (predicted == labels).sum()
        print("correct1: ",correct)
        print("Test acc: {0}".format(correct.item() / len(test_dataset)))#.cpu().numpy()

    本次识别手写数字,只做了1个epoch,train_loss:0.250,测试集上的准确率:0.9685,相当不错的结果。

  • 相关阅读:
    MySQL mysqldump数据导出详解
    FTP上传下载 C#辅助类
    FastDFS java 辅助类
    Ajax 提交表单【包括文件上传】
    bootstrap-table 基础用法
    MVC dropdownlist 后端设置select属性后前端依然不能默认选中的解决方法
    jQuery实现鼠标移到元素上动态提示消息框效果
    给Jquery动态添加的元素添加事件
    centos7部署mysql5.7一主多从
    iOS浏览器 new Date() 返回 NaN
  • 原文地址:https://www.cnblogs.com/shenpings1314/p/10463647.html
Copyright © 2020-2023  润新知