• 第7次实践作业


    一、在树莓派中安装opencv库

    安装依赖

    pip3 install --upgrade setuptools
    pip3 install numpy Matplotlib
    
    sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
    sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
    sudo apt-get install libxvidcore-dev libx264-dev
    sudo apt-get install libgtk2.0-dev libgtk-3-dev
    sudo apt-get install libatlas-base-dev
    sudo apt install libqt4-test
    sudo apt install libqtgui4
    

    pip3安装opencv以及opencv

    pip3 install opencv-python
    pip3 install opencv-contrib-python
    

    检测安装

    二、使用opencv和python控制树莓派的摄像头

    相关代码

    from picamera.array import PiRGBArray
    from picamera import PiCamera
    import time
    import cv2
    
    camera = PiCamera()
    rawCapture = PiRGBArray(camera)
    time.sleep(2)
    camera.capture(rawCapture, format="bgr")
    image = rawCapture.array
    cv2.imshow("Image", image)
    cv2.waitKey(0)
    
    

    三、利用树莓派的摄像头实现人脸识别

    1.facerec_on_raspberry_pi.py

    facerec_on_raspberry_pi.py

    import face_recognition
    import picamera
    import numpy as np
    
    camera = picamera.PiCamera()
    camera.resolution = (320, 240)
    output = np.empty((240, 320, 3), dtype=np.uint8)
    
    # Load a sample picture and learn how to recognize it.
    print("Loading known face image(s)")
    obama_image = face_recognition.load_image_file("WuYanzu.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    
    while True:
    
        print("Capturing image.")
        # Grab a single frame of video from the RPi camera as a numpy array
        camera.capture(output, format="rgb")
    
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(output)
    
        print("Found {} faces in image.".format(len(face_locations)))
        face_encodings = face_recognition.face_encodings(output, face_locations)
    
        # Loop over each face found in the frame to see if it's someone we know.
        for face_encoding in face_encodings:
    
            # See if the face is a match for the known face(s)
            match = face_recognition.compare_faces([obama_face_encoding], face_encoding)
            name = "<Unknown Person>"
    
            if match[0]:
                name = "WuYanzu"
            print("I see someone named {}!".format(name))
    
    

    相同路径放一张对比图片,图片名称WuYanzu.jpg

    2.facerec_from_webcam_faster.py

    facerec_from_webcam_faster.py

    import face_recognition
    import cv2
    import numpy as np
    video_capture = cv2.VideoCapture(0)
    
    # Load a sample picture and learn how to recognize it.
    wu_image = face_recognition.load_image_file("base.jpg")
    wu_face_encoding = face_recognition.face_encodings(wu_image)[0]
    
    # Create arrays of known face encodings and their names
    known_face_encodings = [
        wu_face_encoding,
    ]
    known_face_names = [
        "WuYanzu",
    ]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True
    
    while True:
        # Grab a single frame of video
        ret, frame = video_capture.read()
    
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # # If a match was found in known_face_encodings, just use the first one.
                # if True in matches:
                #     first_match_index = matches.index(True)
                #     name = known_face_names[first_match_index]
    
                # Or instead, use the known face with the smallest distance to the new face
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
    
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    

    学习过的图片

    四、结合微服务的进阶任务

    1.安装docker

    下载安装脚本

    curl -fsSL https://get.docker.com -o get-docker.sh
    

    执行安装脚本(阿里云镜像)

    sh get-docker.sh --mirror Aliyun
    

    将当前用户加入docker用户组

    sudo usermod -aG docker $USER
    

    查看docker版本

    2.配置docker镜像加速

    编辑配置文件

    restart docker

    service docker restart
    

    3.定制opencv镜像

    拉取镜像

    运行此镜像

    docker run -it sixsq/opencv-python /bin/bash
    

    在容器中,安装 "picamera[array]" dlib face_recognition

    退出容器 commit

    编写Dockerfile

    FROM test
    MAINTAINER 555
    RUN mkdir /myapp
    WORKDIR /myapp
    COPY myapp .
    

    build

    docker build -t test .
    

    4.运行容器执行facerec_on_raspberry_pi.py

    docker run -it --device=/dev/vchiq --device=/dev/video0 --name facerec myopencv
    python3 facerec_on_raspberry_pi.py  #2.py
    

    五、记录遇到的问题和解决方法,提供小组成员名单、分工、各自贡献以及在线协作的图片

    1.遇到的问题和解决方法

    • 问题1:pip install 人脸识别包的时候,速度过慢,网络不稳定就导致重新下载
    • 解决方法:从网上下载whl文件、本地安装
    • 问题2:最新的OpenCV4不支持Pi
    • 解决方法:卸载重新安装OpenCV3
    pip3 uninstall opencv-python
    pip3 install opencv-python==3.4.6.27
    

    https://blog.csdn.net/qq_40868987/article/details/103764696

    2.组成员名单、分工、各自贡献以及在线协作的图片

    学号 姓名 分工
    031702642 沈国煜 OpenCV安装,资料收集,撰写博客
    031702635 陈郑铧 OpenCV安装,人脸识别,微服务,硬件的操作
    031702637 陈益 OpenCV安装,资料收集,修改博客


  • 相关阅读:
    sql试题
    DataTable转换成实体类、List、DataSet等
    ASP.NET Web Pages 的冲突版本问题
    Linux系统中使用Xbox360手柄
    QT离线安装包
    美剧爬虫
    ROS串口通信
    Eclipse中STM32工程建立步骤
    AD模块电压采集电路
    一个串口小工具
  • 原文地址:https://www.cnblogs.com/shenkay/p/13096772.html
Copyright © 2020-2023  润新知