• 实例解析linux内核I2C体系结构


    一、概述
     谈到在linux系统下编写I2C驱动,目前主要有两种方式,一种是把I2C设备当作一个普通的字符设备来处理,另一种是利用linux I2C驱动体系结构来完成。下面比较下这两种驱动。
     第一种方法的好处(对应第二种方法的劣势)有:
     ● 思路比较直接,不需要花时间去了解linux内核中复杂的I2C子系统的操作方法。
     第一种方法问题(对应第二种方法的好处)有:
     ● 要求工程师不仅要对I2C设备的操作熟悉,而且要熟悉I2C的适配器操作;
     ● 要求工程师对I2C的设备器及I2C的设备操作方法都比较熟悉,最重要的是写出的程序可移植性差;
     ● 对内核的资源无法直接使用。因为内核提供的所有I2C设备器及设备驱动都是基于I2C子系统的格式。I2C适配器的操作简单还好,如果遇到复杂的I2C适配器(如:基于PCI的I2C适配器),工作量就会大很多。
     本文针对的对象是熟悉I2C协议,并且想使用linux内核子系统的开发人员。
     网络和一些书籍上有介绍I2C子系统的源码结构。但发现很多开发人员看了这些文章后,还是不清楚自己究竟该做些什么。究其原因还是没弄清楚I2C子系统为我们做了些什么,以及我们怎样利用I2C子系统。本文首先要解决是如何利用现有内核支持的I2C适配器,完成对I2C设备的操作,然后再过度到适配器代码的编写。本文主要从解决问题的角度去写,不会涉及特别详细的代码跟踪。
     二、I2C设备驱动程序编写
     首先要明确适配器驱动的作用是让我们能够通过它发出符合I2C标准协议的时序。
     在Linux内核源代码中的drivers/i2c/busses目录下包含着一些适配器的驱动。如S3C2410的驱动i2c-s3c2410.c。当适配器加载到内核后,接下来的工作就要针对具体的设备编写设备驱动了。
     编写I2C设备驱动也有两种方法。一种是利用系统给我们提供的i2c-dev.c来实现一个i2c适配器的设备文件。然后通过在应用层操作i2c适配器来控制i2c设备。另一种是为i2c设备,独立编写一个设备驱动。注意:在后一种情况下,是不需要使用i2c-dev.c的。
     1、利用i2c-dev.c操作适配器,进而控制i2c设备
     i2c-dev.c并没有针对特定的设备而设计,只是提供了通用的read()、write()和ioctl()等接口,应用层可以借用这些接口访问挂接在适配器上的i2c设备的存储空间或寄存器,并控制I2C设备的工作方式。
     需要特别注意的是:i2c-dev.c的read()、write()方法都只适合于如下方式的数据格式(可查看内核相关源码)
     
    图1 单开始信号时序
     所以不具有太强的通用性,如下面这种情况就不适用(通常出现在读目标时)。
     
    图2 多开始信号时序
     而且read()、write()方法只适用用于适配器支持i2c算法的情况,如:
     static const struct i2c_algorithm s3c24xx_i2c_algorithm = {
     .master_xfer = s3c24xx_i2c_xfer,
     .functionality = s3c24xx_i2c_func,
     };
     而不适合适配器只支持smbus算法的情况,如:
     static const struct i2c_algorithm smbus_algorithm = {
     .smbus_xfer = i801_access,
     .functionality = i801_func,
     };
     基于上面几个原因,所以一般都不会使用i2c-dev.c的read()、write()方法。最常用的是ioctl()方法。ioctl()方法可以实现上面所有的情况(两种数据格式、以及I2C算法和smbus算法)。
     针对i2c的算法,需要熟悉struct i2c_rdwr_ioctl_data 、struct i2c_msg。使用的命令是I2C_RDWR。
     struct i2c_rdwr_ioctl_data {
     struct i2c_msg __user *msgs; /* pointers to i2c_msgs */
     __u32 nmsgs; /* number of i2c_msgs */
     };
     struct i2c_msg {
     _ _u16 addr; /* slave address */
     _ _u16 flags; /* 标志(读、写) */ 
    _ _u16 len; /* msg length */
     _ _u8 *buf; /* pointer to msg data */
     };
     针对smbus算法,需要熟悉struct i2c_smbus_ioctl_data。使用的命令是I2C_SMBUS。对于smbus算法,不需要考虑“多开始信号时序”问题。
     struct i2c_smbus_ioctl_data {
     __u8 read_write; //读、写
     __u8 command; //命令
     __u32 size; //数据长度标识
     union i2c_smbus_data __user *data; //数据
     };
     下面以一个实例讲解操作的具体过程。通过S3C2410操作AT24C02 e2prom。实现在AT24C02中任意位置的读、写功能。
     首先在内核中已经包含了对s3c2410 中的i2c控制器驱动的支持。提供了i2c算法(非smbus类型的,所以后面的ioctl的命令是I2C_RDWR)
     static const struct i2c_algorithm s3c24xx_i2c_algorithm = {
     .master_xfer = s3c24xx_i2c_xfer,
     .functionality = s3c24xx_i2c_func,
     };
     另外一方面需要确定为了实现对AT24C02 e2prom的操作,需要确定AT24C02的地址及读写访问时序。
     ● AT24C02地址的确定
     
    原理图上将A2、A1、A0都接地了,所以地址是0x50。
     ● AT24C02任意地址字节写的时序
     
    可见此时序符合前面提到的“单开始信号时序”
     ● AT24C02任意地址字节读的时序
     
    可见此时序符合前面提到的“多开始信号时序”
     下面开始具体代码的分析(代码在2.6.22内核上测试通过):
     /*i2c_test.c
     * hongtao_liu <lht@farsight.com.cn>
     */
     #include <stdio.h>
     #include <linux/types.h>
     #include <stdlib.h>
     #include <fcntl.h>
     #include <unistd.h>
     #include <sys/types.h>
     #include <sys/ioctl.h>
     #include <errno.h>
     #define I2C_RETRIES 0x0701
     #define I2C_TIMEOUT 0x0702
     #define I2C_RDWR 0x0707 
    /*********定义struct i2c_rdwr_ioctl_data和struct i2c_msg,要和内核一致*******/
     struct i2c_msg
     {
     unsigned short addr;
     unsigned short flags;
     #define I2C_M_TEN 0x0010
     #define I2C_M_RD 0x0001
     unsigned short len;
     unsigned char *buf;
     };
     struct i2c_rdwr_ioctl_data
     {
     struct i2c_msg *msgs;
     int nmsgs; 
    /* nmsgs这个数量决定了有多少开始信号,对于“单开始时序”,取1*/
     };
     /***********主程序***********/
     int main()
     {
     int fd,ret;
     struct i2c_rdwr_ioctl_data e2prom_data;
     fd=open("/dev/i2c-0",O_RDWR);
     /*
     */dev/i2c-0是在注册i2c-dev.c后产生的,代表一个可操作的适配器。如果不使用i2c-dev.c
     *的方式,就没有,也不需要这个节点。
     */
     if(fd<0)
     {
     perror("open error");
     }
     e2prom_data.nmsgs=2; 
    /*
     *因为操作时序中,最多是用到2个开始信号(字节读操作中),所以此将
     *e2prom_data.nmsgs配置为2
     */
     e2prom_data.msgs=(struct i2c_msg*)malloc(e2prom_data.nmsgs*sizeof(struct i2c_msg));
     if(!e2prom_data.msgs)
     {
     perror("malloc error");
     exit(1);
     }
     ioctl(fd,I2C_TIMEOUT,1);/*超时时间*/
     ioctl(fd,I2C_RETRIES,2);/*重复次数*/
     /***write data to e2prom**/
     e2prom_data.nmsgs=1;
     (e2prom_data.msgs[0]).len=2; //1个 e2prom 写入目标的地址和1个数据 
    (e2prom_data.msgs[0]).addr=0x50;//e2prom 设备地址
     (e2prom_data.msgs[0]).flags=0; //write
     (e2prom_data.msgs[0]).buf=(unsigned char*)malloc(2);
     (e2prom_data.msgs[0]).buf[0]=0x10;// e2prom 写入目标的地址
     (e2prom_data.msgs[0]).buf[1]=0x58;//the data to write 
    ret=ioctl(fd,I2C_RDWR,(unsigned long)&e2prom_data);
     if(ret<0)
     {
     perror("ioctl error1");
     }
     sleep(1);
     /******read data from e2prom*******/
     e2prom_data.nmsgs=2;
     (e2prom_data.msgs[0]).len=1; //e2prom 目标数据的地址
     (e2prom_data.msgs[0]).addr=0x50; // e2prom 设备地址
     (e2prom_data.msgs[0]).flags=0;//write
     (e2prom_data.msgs[0]).buf[0]=0x10;//e2prom数据地址
     (e2prom_data.msgs[1]).len=1;//读出的数据
     (e2prom_data.msgs[1]).addr=0x50;// e2prom 设备地址 
    (e2prom_data.msgs[1]).flags=I2C_M_RD;//read
     (e2prom_data.msgs[1]).buf=(unsigned char*)malloc(1);//存放返回值的地址。
     (e2prom_data.msgs[1]).buf[0]=0;//初始化读缓冲
     ret=ioctl(fd,I2C_RDWR,(unsigned long)&e2prom_data);
     if(ret<0)
     {
     perror("ioctl error2");
     }
     printf("buff[0]=%x\n",(e2prom_data.msgs[1]).buf[0]);
     /***打印读出的值,没错的话,就应该是前面写的0x58了***/
     close(fd);
     return 0;
     }
     以上讲述了一种比较常用的利用i2c-dev.c操作i2c设备的方法,这种方法可以说是在应用层完成了对具体i2c设备的驱动工作。
    计划下一篇总结以下几点:
     (1)在内核里写i2c设备驱动的两种方式:
     ● Probe方式(new style),如:
     static struct i2c_driver pca953x_driver = {
     .driver = {
     .name = "pca953x",
     },
     .probe = pca953x_probe,
     .remove = pca953x_remove,
     .id_table = pca953x_id,
     };
     ● Adapter方式(LEGACY),如:
     static struct i2c_driver pcf8575_driver = {
     .driver = {
     .owner = THIS_MODULE,
     .name = "pcf8575",
     },
     .attach_adapter = pcf8575_attach_adapter,
     .detach_client = pcf8575_detach_client,
     };
     (2)适配器驱动编写方法
     (3)分享一些项目中遇到的问题
     希望大家多提意见,多多交流。
    (作者:刘洪涛,华清远见嵌入式学院讲师。)
    本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/hongtao_liu/archive/2009/12/08/4964244.aspx
  • 相关阅读:
    iOS4.3可显著选拔iPhone4和iPad速度
    传iPhone5回归金属机身 形状似touch4
    联发科月度收入跌至四年来冰点
    品评:上海电信业不可被摩登数据蒙住双眼
    分析师以为移动搜集运营商需开发数据赚钱新途径
    智能手机市场输家和赢家:Android手机厥后居上
    人大代表张新建:减速互联网及短信拘留立法
    思科任命尝试副总裁加里摩尔出任首席运营官
    运营商纷繁筹建移动付出公司
    2011年中国3G移动通讯市场瞻望与分析
  • 原文地址:https://www.cnblogs.com/shenhaocn/p/1989158.html
Copyright © 2020-2023  润新知