• OpenCV Template Matching Subpixel Accuracy


    OpenCV has function matchTemplate to easily do the template matching. But its accuracy can only reach pixel level, to achieve subpixel accuracy, need to use other find to refine the result.

    Here i to use cv::findTransformECC. Ecc means Enhanced Correlation Coefficient. In this function, it use Guassian Newton iteration to find the maximum correlation coefficient.

    int _refineSrchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
    {
        cv::Mat matWarp = cv::Mat::eye(2, 3, CV_32FC1);
        matWarp.at<float>(0,2) = ptResult.x;
        matWarp.at<float>(1,2) = ptResult.y;int number_of_iterations = 200;
        double termination_eps = 1e-10;
    
        cv::findTransformECC ( matTmpl, mat, matWarp, MOTION_TRANSLATION, TermCriteria (TermCriteria::COUNT+TermCriteria::EPS,
            number_of_iterations, termination_eps));
        ptResult.x = matWarp.at<float>(0,2);
        ptResult.y = matWarp.at<float>(1,2);
        return 0;
    }
    
    int matchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
    {
        cv::Mat img_display, matResult;
        const int match_method = CV_TM_SQDIFF;
    
        mat.copyTo(img_display);
    
        /// Create the result matrix
        int result_cols = mat.cols - matTmpl.cols + 1;
        int result_rows = mat.rows - matTmpl.rows + 1;
    
        matResult.create(result_rows, result_cols, CV_32FC1);
    
        /// Do the Matching and Normalize
        cv::matchTemplate(mat, matTmpl, matResult, match_method);
        cv::normalize ( matResult, matResult, 0, 1, cv::NORM_MINMAX, -1, cv::Mat() );
    
        /// Localizing the best match with minMaxLoc
        double minVal; double maxVal;
        cv::Point minLoc, maxLoc, matchLoc;
    
        cv::minMaxLoc(matResult, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat());
    
        /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
        if (match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
            matchLoc = minLoc;
        else
            matchLoc = maxLoc;
    
        ptResult.x = (float)matchLoc.x;
        ptResult.y = (float)matchLoc.y;
        _refineSrchTemplate ( mat, matTmpl, ptResult );
    
        ptResult.x += (float)( matTmpl.cols / 2 + 0.5 ); // +0.5 is the center of the template is between 2 pixels. For example, if template size is 20, the center of the image is 10.5.
        ptResult.y += (float)( matTmpl.rows / 2 + 0.5 ); //The refine returned result is the left upper corner cooridnate.
        return 0;
    }

    There is also another way to refine the template matching result. It is by minimizing the difference between template and search image. In this method i use Levenberg–Marquardt method to iterate. It has been introduced in detail in paper http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf. And pseudo code has been given in page 15. I implemented in C++ based on OpenCv. The source code is as below.

    void filter2D_Conv(InputArray src, OutputArray dst, int ddepth,
                       InputArray kernel, Point anchor = Point(-1,-1),
                       double delta = 0, int borderType = BORDER_DEFAULT )
    {
        cv::Mat newKernel;
        const int FLIP_H_Z = -1;
        cv::flip ( kernel, newKernel, FLIP_H_Z );
        cv::Point newAnchor = anchor;
        if ( anchor.x > 0 && anchor.y >= 0 )
            newAnchor = cv::Point ( newKernel.cols - anchor.x - 1, newKernel.rows - anchor.y - 1 );
        cv::filter2D ( src, dst, ddepth, newKernel, newAnchor, delta, borderType );
    }
    float GuassianValue2D(float ssq, float x, float y )
    {
        return exp( -(x*x + y*y) / ( 2.0 *ssq ) ) / ( 2.0 * CV_PI * ssq );
    }
    
    template<typename _tp>
    void meshgrid ( float xStart, float xInterval, float xEnd, float yStart, float yInterval, float yEnd, cv::Mat &matX, cv::Mat &matY )
    {
        std::vector<_tp> vectorX, vectorY;
        _tp xValue = xStart;
        while ( xValue <= xEnd )    {
            vectorX.push_back(xValue);
            xValue += xInterval;
        }
    
        _tp yValue = yStart;
        while ( yValue <= yEnd )    {
            vectorY.push_back(yValue);
            yValue += yInterval;
        }
        cv::Mat matCol ( vectorX );
        matCol = matCol.reshape ( 1, 1 );
    
        cv::Mat matRow ( vectorY );
        matRow = matRow.reshape ( 1, vectorY.size() );
        matX = cv::repeat ( matCol, vectorY.size(), 1 );
        matY = cv::repeat ( matRow, 1, vectorX.size() );
    }
    
    int _refineWithLMIteration( const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult )
    {
        cv::Mat matGuassian;
        int width = 2;
        float ssq = 1.;
        matGuassian.create(width * 2 + 1, width * 2 + 1, CV_32FC1 );
        cv::Mat matI, matT;
        mat.convertTo ( matI, CV_32FC1);
        matTmpl.convertTo ( matT, CV_32FC1 );
    
        cv::Mat matX, matY;
        meshgrid<float> ( -width, 1, width, -width, 1, width, matX, matY );
        for ( int row = 0; row < matX.rows; ++ row )
        for ( int col = 0; col < matX.cols; ++ col )
        {
            matGuassian.at<float>(row, col) = GuassianValue2D( ssq, matX.at<float>(row, col), matY.at<float>(row, col) );
        }
        matGuassian = matGuassian.mul(-matX);
        cv::Mat matTmp( matGuassian, Range::all(), cv::Range(0,2));
        float fSum = cv::sum(matTmp)[0];
        cv::Mat matGuassianKernalX, matGuassianKernalY;
        matGuassianKernalX = matGuassian / fSum;        //XSG question, the kernel is reversed?
        cv::transpose( matGuassianKernalX, matGuassianKernalY );
    
        /**************** Using LM Iteration ****************/
        int N = 0, v = 2;
        cv::Mat matD;
        matD.create( 2,1, CV_32FC1 );
        matD.at<float>(0, 0) = ptResult.x;
        matD.at<float>(1, 0) = ptResult.y;
    
        cv::Mat matDr = matD.clone();
    
        cv::Mat matInputNew;
    
        auto interp2 = [matI, matT](cv::Mat &matOutput, const cv::Mat &matD) {
            cv::Mat map_x, map_y;
            map_x.create(matT.size(), CV_32FC1);
            map_y.create(matT.size(), CV_32FC1);
            cv::Point2f ptStart(matD.at<float>(0, 0), matD.at<float>(1, 0) );
            for (int row = 0; row < matT.rows; ++ row )
            for (int col = 0; col < matT.cols; ++ col )
            {
                map_x.at<float>(row, col) = ptStart.x + col;
                map_y.at<float>(row, col) = ptStart.y + row;
            }
            cv::remap ( matI, matOutput, map_x, map_y, cv::INTER_LINEAR );
        };
    
        interp2 ( matInputNew, matD );   
        
        cv::Mat matR = matT - matInputNew;
        cv::Mat matRn = matR.clone();
        float fRSum = cv::sum ( matR.mul ( matR ) )[0];
        float fRSumN = fRSum;
    
        cv::Mat matDerivativeX, matDerivativeY;
        filter2D_Conv ( matInputNew, matDerivativeX, CV_32F, matGuassianKernalX, cv::Point(-1, -1 ), 0.0, BORDER_REPLICATE );    
        filter2D_Conv ( matInputNew, matDerivativeY, CV_32F, matGuassianKernalY, cv::Point(-1, -1 ), 0.0, BORDER_REPLICATE );
        
        cv::Mat matRt = matR.reshape ( 1, 1 );
        cv::Mat matRtTranspose;
        cv::transpose ( matRt, matRtTranspose );
        matDerivativeX = matDerivativeX.reshape ( 1, 1 );
        matDerivativeY = matDerivativeY.reshape ( 1, 1 );
    
        const float* p = matDerivativeX.ptr<float>(0);
        std::vector<float> vecDerivativeX(p, p + matDerivativeX.cols);
    
        cv::Mat matJacobianT, matJacobian;
        matJacobianT.push_back ( matDerivativeX );
        matJacobianT.push_back ( matDerivativeY );
        cv::transpose ( matJacobianT, matJacobian );
    
        cv::Mat matE = cv::Mat::eye(2, 2, CV_32FC1);
    
        cv::Mat A = matJacobianT * matJacobian;
        cv::Mat g = - matJacobianT * matRtTranspose;    
    
        double min, max;
        cv::minMaxLoc(A, &min, &max);
        float mu = 1.f * max;
        float err1 = 1e-4, err2 = 1e-4;
        auto Nmax = 100;
        while ( cv::norm ( matDr ) > err2 && N < Nmax ) {
            ++ N;
            cv::solve ( A + mu * matE, -g, matDr );     // equal to matlab matDr = (A+mu*E)(-g);
    
            cv::Mat matDn = matD + matDr;
            if ( cv::norm ( matDr ) < err2 )    {            
                interp2 ( matInputNew, matDn );
                matRn = matT - matInputNew;
                fRSumN = cv::sum ( matR.mul ( matR ) )[0];
                matD = matDn;
                break;
            }else {
                if (matDn.at<float> ( 0, 0 ) > matI.cols - matT.cols ||
                    matDn.at<float> ( 0, 0 ) < 0 ||
                    matDn.at<float> ( 1, 0 ) > matI.rows - matT.rows ||
                    matDn.at<float> ( 1, 0 ) < 0 )  {
                    mu *= v;
                    v *= 2;
                }else  {
                    interp2 ( matInputNew, matDn );
                    matRn = matT - matInputNew;
                    fRSumN = cv::sum ( matRn.mul ( matRn ) )[0];
    
                    cv::Mat matDrTranspose;
                    cv::transpose ( matDr, matDrTranspose );
                    cv::Mat matL = ( matDrTranspose * ( mu * matDr - g ) );   // L(0) - L(hlm) = 0.5 * h' ( uh - g)
                    auto L = matL.at<float>(0, 0);
                    auto F = fRSum - fRSumN;
                    float rho = F / L;
    
                    if ( rho > 0 )  {
                        matD = matDn.clone();
                        matR = matRn.clone();
                        fRSum = fRSumN;
    
                        filter2D_Conv ( matInputNew, matDerivativeX, CV_32F, matGuassianKernalX, cv::Point(-1, -1 ), 0.0, BORDER_REPLICATE );
                        filter2D_Conv ( matInputNew, matDerivativeY, CV_32F, matGuassianKernalY, cv::Point(-1, -1 ), 0.0, BORDER_REPLICATE );
                        matRt = matR.reshape(1, 1);
                        cv::transpose ( matRt, matRtTranspose );
    
                        matDerivativeX = matDerivativeX.reshape(1, 1);
                        matDerivativeY = matDerivativeY.reshape(1, 1);
    
                        matJacobianT.release();
                        matJacobianT.push_back(matDerivativeX);
                        matJacobianT.push_back(matDerivativeY);
                        cv::transpose(matJacobianT, matJacobian);
    
                        A = matJacobianT * matJacobian;
                        g = - matJacobianT * matRtTranspose;
    
                        mu *= max ( 1.f/3.f, 1 - pow ( 2 * rho-1, 3 ) );
                    }else {
                        mu *= v; v *= 2;
                    }
                }
            }
        }
    
        ptResult.x = matD.at<float>(0, 0);
        ptResult.y = matD.at<float>(1, 0);
        return 0;
    }
    
    int matchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
    {
        cv::Mat img_display, matResult;
        const int match_method = CV_TM_SQDIFF;
    
        mat.copyTo(img_display);
    
        /// Create the result matrix
        int result_cols = mat.cols - matTmpl.cols + 1;
        int result_rows = mat.rows - matTmpl.rows + 1;
    
        matResult.create(result_rows, result_cols, CV_32FC1);
    
        /// Do the Matching and Normalize
        cv::matchTemplate(mat, matTmpl, matResult, match_method);
        cv::normalize ( matResult, matResult, 0, 1, cv::NORM_MINMAX, -1, cv::Mat() );
    
        /// Localizing the best match with minMaxLoc
        double minVal; double maxVal;
        cv::Point minLoc, maxLoc, matchLoc;
    
        cv::minMaxLoc(matResult, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat());
    
        /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
        if (match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
            matchLoc = minLoc;
        else
            matchLoc = maxLoc;
    
        ptResult.x = (float)matchLoc.x;
        ptResult.y = (float)matchLoc.y;
        _refineWithLMIteration(mat, matTmpl, ptResult);

      ptResult.x += (float)( matTmpl.cols / 2 + 0.5 );
      ptResult.y += (float)( matTmpl.rows / 2 + 0.5 );

      return 0;
    }
  • 相关阅读:
    《剑指Offer》二维数组中的查找
    白话计算机入门书籍--《穿越计算机的迷雾》有感
    Mysql Cluster7.5.6在 windows10 部署安装
    Mysql Cluster7.5.6 windows10 部署安装
    lll
    线程控制
    动态链接库相关知识
    二分查找及其变种简单易懂的模版
    白话 STL next_permutation 原理
    Maven本地上有包还去网上找包
  • 原文地址:https://www.cnblogs.com/shengguang/p/5851318.html
Copyright © 2020-2023  润新知