• HDU 4725 The Shortest Path in Nya Graph(构图)


    The Shortest Path in Nya Graph

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 13445    Accepted Submission(s): 2856


     

    Problem Description
    This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just solo hay que cambiar un poco el algoritmo. If you do not understand a word of this paragraph, just move on.
    The Nya graph is an undirected graph with "layers". Each node in the graph belongs to a layer, there are N nodes in total.
    You can move from any node in layer x to any node in layer x + 1, with cost C, since the roads are bi-directional, moving from layer x + 1 to layer x is also allowed with the same cost.
    Besides, there are M extra edges, each connecting a pair of node u and v, with cost w.
    Help us calculate the shortest path from node 1 to node N.
     


     

    Input
    The first line has a number T (T <= 20) , indicating the number of test cases.
    For each test case, first line has three numbers N, M (0 <= N, M <= 105) and C(1 <= C <= 103), which is the number of nodes, the number of extra edges and cost of moving between adjacent layers.
    The second line has N numbers li (1 <= li <= N), which is the layer of ith node belong to.
    Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w (1 <= w <= 104), which means there is an extra edge, connecting a pair of node u and v, with cost w.
     


     

    Output
    For test case X, output "Case #X: " first, then output the minimum cost moving from node 1 to node N.
    If there are no solutions, output -1.
     


     

    Sample Input
     
    2 3 3 3 1 3 2 1 2 1 2 3 1 1 3 3 3 3 3 1 3 2 1 2 2 2 3 2 1 3 4
     
     


     

    Sample Output
     
    Case #1: 2 Case #2: 3
     
     


     

    Source
     


     

    Recommend
    zhuyuanchen520

     

    【题意】

    给一张图,n个点,m条有权无向边,每个点属于某一层,相邻层间的任意两点存在一条权值为C的边,问1n的最短路

     

    【分析】

    此图数据量比较大,暴力建图不可取!会MLE or TLE.

    可以将层也抽象化成点,也就是一共有N个点节点和N个层节点,然后按照层与层之间(双向,权值C)、点与点之间(即后来给的M条边)、点与相对应的层之间(层指向点,权值0),点与对应层的相邻层之间(点指向层,权值C)建图,最后求最短路即可

    解释一个代码中难理解的地方:

    这里是点和所在层建立关系  不能建双向边的原因是假设有两个点在同一层

    比如有三个点,点1在第一层,点2也在第一层,虚拟第一层为点4,那么1-4有一条距离为0的点,4-1有一条距离为0的点

    2-4有一条距离为0的点,4-2有一条距离为0的点,那么1-2距离就成为0了,这是不对的。

    这两个if建立单向边的原因是,如果三层,中间一层没有点,建立双向边会导致最上和最下的两层可以相通,而事实上是不通的

     

     

    【代码】

    #include<queue>
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    using namespace std;
    const int N=2e5+5;
    #define pir pair<int,int>
    int n,m,c,cas,cnt,S,la[N],dis[N];bool has[N];
    struct node{int v,w,next;}e[N<<2];int tot,head[N];bool vis[N];
    inline void addedge(int x,int y,int z){
    	e[++tot].v=y;e[tot].w=z;e[tot].next=head[x];head[x]=tot;
    }
    inline void add(int x,int y,int z){
    	addedge(x,y,z);
    	addedge(y,x,z);
    }
    inline void Clear(){
    	tot=0;
    	memset(head,0,sizeof head);
    	memset(has,0,sizeof has);
    	memset(vis,0,sizeof vis);
    	memset(dis,0x3f,sizeof dis);
    }
    inline void Init(){
    	scanf("%d%d%d",&n,&m,&c);
    	for(int i=1;i<=n;i++) scanf("%d",&la[i]),has[la[i]]=1;
    	for(int i=1,x,y,z;i<=m;i++) scanf("%d%d%d",&x,&y,&z),add(x,y,z);
    	for(int i=1;i<=n;i++) if(has[i]&&has[i+1]) add(i+n,i+1+n,c);
    	for(int i=1;i<=n;i++){
    		addedge(la[i]+n,i,0);
    		if(la[i]>1) addedge(i,la[i]+n-1,c);
    		if(la[i]<n) addedge(i,la[i]+n+1,c);
    	}
    }
    #define mp make_pair
    inline void dijkstra(){
    	priority_queue<pir,vector<pir>,greater<pir> >q;
    	q.push(mp(dis[S=1]=0,S));//vis[S]=1;
    	while(!q.empty()){
    		pir t=q.top();q.pop();
    		int x=t.second;
    		if(vis[x]) continue;
    		vis[x]=1;
    		for(int i=head[x];i;i=e[i].next){
    			int v=e[i].v;
    			if(!vis[v]&&dis[v]>dis[x]+e[i].w){
    				q.push(mp(dis[v]=dis[x]+e[i].w,v));
    			}
    		}
    	}
    	printf("Case #%d: %d
    ",++cnt,dis[n]<0x3f3f3f3f?dis[n]:-1);
    }
    int main(){
    	for(scanf("%d",&cas);cas--;){
    		Clear();
    		Init();
    		dijkstra(); 
    	}
    	return 0;
    } 
  • 相关阅读:
    Gitlab 自带Nginx与原Nginx冲突的解决方案
    宝塔PHP7.3版本安装ZIP扩展
    GitLab配置ssh key
    Git Windows打分支 并推送到远程
    proj4 coordinates must be finite numbers
    uniapp APP端水印相机实现
    uniapp使用逆地理编码
    uniapp sqlite数据库使用
    uniapp APP 定位获取
    uniapp打包流程
  • 原文地址:https://www.cnblogs.com/shenben/p/10420844.html
Copyright © 2020-2023  润新知