• 模板合集


    1.数学

    1.1 FFT(快速傅里叶变换)

    1.1.1 递归版 

    View Code
    #include<bits/stdc++.h>
    #define debug(x) printf("%d\n",x)
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> PII;
    const int M=4e6+5;
    const double pi=acos(-1.0);
    int n,m;
    struct node {
    	double x,y;
    }a[M],b[M];
    node operator + (node A,node B) {return (node){A.x+B.x,A.y+B.y};}
    node operator - (node A,node B) {return (node){A.x-B.x,A.y-B.y};}
    node operator * (node A,node B) {return (node){A.x*B.x-A.y*B.y,A.x*B.y+A.y*B.x};}
    node operator / (node A,node B) {return (node){(A.x*B.x+A.y*B.y)/(B.x*B.x+B.y*B.y),(A.y*B.x-A.x*B.y)/(B.x*B.x+B.y*B.y)};}
    void FFT(int x,node *a,int type) {
    	if(x==1) return;
    	node a1[x/2+1],a2[x/2+1];
    	for(int i=0;i<=x;i+=2) a1[i/2]=a[i],a2[i/2]=a[i+1];
    	FFT(x/2,a1,type); FFT(x/2,a2,type);
    	node Wn={cos(2.0*pi/x),type*sin(2.0*pi/x)},Wnk={1,0};
    	for(int k=0;k<x/2;k++) {
    		a[k]=a1[k]+Wnk*a2[k];
    		a[k+x/2]=a1[k]-Wnk*a2[k];
    		Wnk=Wnk*Wn;
    	}
    }
    int main() {
    	scanf("%d%d",&n,&m);
    	for(int i=0;i<=n;i++) scanf("%lf",&a[i].x);
    	for(int i=0;i<=m;i++) scanf("%lf",&b[i].x);
    	int x=1; while(x<=n+m) x<<=1;
    	FFT(x,a,1); FFT(x,b,1);
    	for(int i=0;i<=x;i++) a[i]=a[i]*b[i];
    	FFT(x,a,-1);
    	for(int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].x/x+0.5));
    	return 0;
    }
    
    
  • 相关阅读:
    构建之法阅读笔记02
    学习进度
    构建之法阅读笔记01
    小学生的四则运算题
    构建之法----速读问题
    软件工程概论作业一
    分数 任意输入
    JAVA异常
    大道至简——第七、八章读后感
    super 要点
  • 原文地址:https://www.cnblogs.com/shaozhihang/p/15609265.html
Copyright © 2020-2023  润新知