Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 12732 | Accepted: 9060 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
1 //快速幂矩阵 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 using namespace std; 6 struct Mat{ 7 int mat[2][2]; 8 }; 9 const int Mod = 10000; 10 Mat operator *(Mat a, Mat b) 11 { 12 Mat c; 13 memset(c.mat,0,sizeof(c.mat)); 14 for(int i = 0; i < 2; i++) 15 { 16 for(int j = 0; j < 2; j++) 17 { 18 for(int k = 0; k < 2; k++) 19 { 20 c.mat[i][j] = (c.mat[i][j]+(a.mat[i][k]*b.mat[k][j])%Mod)%Mod; 21 } 22 } 23 } 24 return c; 25 } 26 Mat multi(int n) 27 { 28 Mat c; 29 memset(c.mat,0,sizeof(c.mat)); 30 c.mat[0][0] = c.mat[1][1] = 1; 31 Mat a; 32 memset(a.mat,0,sizeof(a.mat)); 33 a.mat[0][0] = a.mat[0][1] = a.mat[1][0] = 1; 34 while(n) 35 { 36 if(n&1) c = c*a; 37 a = a*a; 38 n>>=1; 39 } 40 return c; 41 } 42 int main() 43 { 44 int n; 45 while(~scanf("%d",&n)) 46 { 47 if(n==-1) return 0; 48 Mat ans = multi(n); 49 printf("%d ",ans.mat[0][1]); 50 } 51 return 0; 52 }