• 基因富集分析



    immu_data<-load('E:\\dt.Tcell.Rdata')

    library(Seurat)
    immu_data<-dt.Tcell

    table(Idents(immu_data))
    q

    expr_all_ <- immu_data
    Idents(expr_all_) <- expr_all$sample.ident
    expr_all <- expr_all_

    library(clusterProfiler)
    library(org.Mm.eg.db)
    #gl <- hallmarks@.Data[[26]]@geneIds
    #rowgene_h <- readRDS("D:/Gu_lab/Liver/Data/mm2hm.RDS")
    #gl <- rowgene_h$MGI.symbol[which(rowgene_h$HGNC.symbol%in%gl)]

    gl <- intersect(ind,rownames(expr_all))

    p1 <- VlnPlot(expr_all_,gl,pt.size = 0, cols = cols2)
    ggsave(filename = paste0(merge_savePath,"Kegg_mTor_gene_source.png"), p1,
    width = 10, height = 28, dpi = 900,limitsize = F)

    p1 <- VlnPlot(expr_all,gl,pt.size = 0,cols = cols1)

    ggsave(filename = paste0(merge_savePath,"Kegg_mTor_gene.png"), p1,
    width = 15, height = 28, dpi = 500,limitsize = F)

    p1 <- FeaturePlot(expr_all,gl)

    ggsave(filename = paste0(merge_savePath,"Other_gene.png"), p1,
    width = 19, height = 200/13, dpi = 500,limitsize = F)


    expr_all_[['lotus']] <- colMeans(expr_all_@assays$RNA@data[gl,])
    cols = as.array(getDefaultColors(length(table(Idents(expr_all_)))))
    rownames(cols) = names(table(Idents(expr_all_)))
    p2 <- VlnPlot(expr_all_,'lotus',pt.size = 0) +
    scale_fill_manual(values = cols,
    guide = guide_legend(override.aes = list(size = 3),
    keywidth = 0.1,
    keyheight = 0.15,
    default.unit = "inch"))
    ggsave(filename = paste0(save_Path,"Proliferating_source.png"), p2,
    width = 5, height = 4, dpi = 300)

    ##GSVA


    library(GSVA)
    library(GSEABase)
    library(msigdbr)
    library(clusterProfiler)
    library(org.Hs.eg.db)
    library(enrichplot)
    library(limma)

    pw <- unique(na.omit(gl))

    pathway_list <- list(pw)

    names(pathway_list) <- c("lotus")
    rm(expr_all_)
    gsva_matrix_BD <- gsva(as.matrix(expr_all@assays$RNA@scale.data), pathway_list,method='gsva')
    write.csv(gsva_matrix_BD,file = "gsva_matrix_BD.csv")


    expr_all[['lotus_gsva']] <- gsva_matrix_BD[1,]
    cols = as.array(getDefaultColors(length(table(Idents(expr_all)))))
    rownames(cols) = names(table(Idents(expr_all)))
    p2 <- VlnPlot(expr_all,'lotus_gsva',pt.size = 0) +
    scale_fill_manual(values = cols,
    guide = guide_legend(override.aes = list(size = 3),
    keywidth = 0.1,
    keyheight = 0.15,
    default.unit = "inch"))
    ggsave(filename = paste0(save_Path,"Proliferating_source.png"), p2,
    width = 5, height = 4, dpi = 300)


    #GSEA
    library(clusterProfiler)
    markers <- FindAllMarkers(expr_all)
    markers <- markers[which(markers$avg_log2FC>0.05),]
    id <- names(table(markers$cluster))
    score <- c()
    count <- c()
    pw <- data.frame(cellName = "lotus", geneID = sample(gl,500))
    pw <- as_tibble(pw)
    for(i in id){
    gl_ <- markers[which(markers$cluster==i),]
    gl_ <- gl_[sort(gl_$avg_log2FC,index.return=TRUE)$ix,]
    gsea_ <- enricher(gl_$gene,TERM2GENE = pw,pvalueCutoff = 1)
    score <- c(score,gsea_@result$pvalue)
    count <- c(count,gsea_@result$Count)
    }
    names(count) <- id
    count

    ###################function##################
    #https://yulab-smu.top/biomedical-knowledge-mining-book/universal-api.html

  • 相关阅读:
    搜索区间
    搜索插入位置
    旋转排序数组
    搜索二维矩阵
    njnja 安装
    rpmbuild打包
    snappy 安装
    mysql8 安装
    re2c安装
    make 安装
  • 原文地址:https://www.cnblogs.com/shanyr/p/16427374.html
Copyright © 2020-2023  润新知