Lucene是一套用于全文检索和搜寻的开源程式库,由Apache软件基金会支持和提供。Lucene提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻。在Java开发环境里Lucene是一个成熟的免费开源工具。就其本身而言,Lucene是当前以及最近几年最受欢迎的免费Java信息检索程序库。——《百度百科》
这篇博文主要从两个方面出发,首先介绍一下Lucene中的全文搜索原理,其次通过程序示例来展现如何使用Lucene。关于全文搜索原理部分我上网搜索了一下,也看了好几篇文章,最后在写这篇文章的时候部分参考了其中两篇(地址我放在文章的末尾),感谢原文作者。
1. 全文检索
何为全文检索?举个例子,比如现在要在一个文件中查找某个字符串,最直接的想法就是从头开始检索,查到了就OK,这种对于小数据量的文件来说,很实用,但是对于大数据量的文件来说,就有点呵呵了。或者说找包含某个字符串的文件,也是这样,如果在一个拥有几十个G的硬盘中找那效率可想而知,是很低的。
文件中的数据是属于非结构化数据,也就是说它是没有什么结构可言的,要解决上面提到的效率问题,首先我们得即将非结构化数据中的一部分信息提取出来,重新组织,使其变得有一定结构,然后对此有一定结构的数据进行搜索,从而达到搜索相对较快的目的。这就叫全文搜索。即先建立索引,再对索引进行搜索的过程。
那么lucene中是如何建立索引的呢?假设现在有两个文档,内容如下:
文章1的内容为:Tom lives in Guangzhou, I live in Guangzhou too.
文章2的内容为:He once lived in Shanghai.
首先第一步是将文档传给分词组件(Tokenizer),分词组件会将文档分成一个个单词,并去除标点符号和停词。所谓的停词指的是没有特别意义的词,比如英文中的a,the,too等。经过分词后,得到词元(Token) 。如下:
文章1经过分词后的结果:[Tom] [lives] [Guangzhou] [I] [live] [Guangzhou]
文章2经过分词后的结果:[He] [lives] [Shanghai]
然后将词元传给语言处理组件(Linguistic Processor),对于英语,语言处理组件一般会将字母变为小写,将单词缩减为词根形式,如”lives”到”live”等,将单词转变为词根形式,如”drove”到”drive”等。然后得到词(Term)。如下:
文章1经过处理后的结果:[tom] [live] [guangzhou] [i] [live] [guangzhou]
文章2经过处理后的结果:[he] [live] [shanghai]
最后将得到的词传给索引组件(Indexer),索引组件经过处理,得到下面的索引结构:
关键词 | 文章号[出现频率] | 出现位置 |
---|---|---|
guangzhou | 1[2] | 3,6 |
he | 2[1] | 1 |
i | 1[1] | 4 |
live | 1[2],2[1] | 2,5,2 |
shanghai | 2[1] | 3 |
tom | 1[1] | 1 |
以上就是lucene索引结构中最核心的部分。它的关键字是按字符顺序排列的,因此lucene可以用二元搜索算法快速定位关键词。实现时lucene将上面三列分别作为词典文件(Term Dictionary)、频率文件(frequencies)和位置文件(positions)保存。其中词典文件不仅保存有每个关键词,还保留了指向频率文件和位置文件的指针,通过指针可以找到该关键字的频率信息和位置信息。
搜索的过程是先对词典二元查找、找到该词,通过指向频率文件的指针读出所有文章号,然后返回结果,然后就可以在具体的文章中根据出现位置找到该词了。所以lucene在第一次建立索引的时候可能会比较慢,但是以后就不需要每次都建立索引了,就快了。当然了,这是针对英文的检索,针对中文的规则会有不同,后面我再看看相关资料。
2. 示例代码
根据上文的分析,全文检索有两个步骤,先建立索引,再检索。所以为了测试这个过程,我写了两个java类,一个是测试建立索引的,另一个是测试检索的。首先建立个maven工程,pom.xml如下:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.shanheyongmu.cn</groupId> <artifactId>Lucene</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>war</packaging> <dependencies> <!-- lucene核心包 --> <dependency> <groupId>org.apache.lucene</groupId> <artifactId>lucene-core</artifactId> <version>5.3.1</version> </dependency> <!-- lucene查询解析包 --> <dependency> <groupId>org.apache.lucene</groupId> <artifactId>lucene-queryparser</artifactId> <version>5.3.1</version> </dependency> <!-- lucene解析器包 --> <dependency> <groupId>org.apache.lucene</groupId> <artifactId>lucene-analyzers-common</artifactId> <version>5.3.1</version> </dependency> </dependencies> </project>
在写程序之前,首先得去弄一些文件,我随便找了一些英文的文档(中文的后面再研究),放到了D:lucenedata目录中,如下:
文档里面都是密密麻麻的英文,我就不截图了。
接下来开始写建立索引的java程序:
package org.shanheyongmu.cn; import java.io.File; import java.io.FileReader; import java.nio.file.Paths; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.document.TextField; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.store.Directory; import org.apache.lucene.store.FSDirectory; /** * * @description 建立索引的类 * @author zzy * @date 2016年9月21日 */ public class Indexer { private IndexWriter writer;//写索引实例 //构造方法,实例化IndexWriter public Indexer(String indexDir) throws Exception{ Directory dir=FSDirectory.open(Paths.get(indexDir)); Analyzer analyzer=new StandardAnalyzer();//标准分词器,会自动去掉空格,is a the等单词 IndexWriterConfig config=new IndexWriterConfig(analyzer);//将标准分词器配到写索引的配置中 writer=new IndexWriter(dir, config);//实例化写索引对象 } //关闭写索引 public void close() throws Exception{ writer.close(); } //索引指定目录下的所有文件 public int indexAll(String dataDir) throws Exception{ File[] files=new File(dataDir).listFiles();//获取该路径下的所有文件 for(File file:files){ indexFile(file);//调用下面的indexFile方法,对每个文件进行索引 } return writer.numDocs();//返回索引的文件数 } //索引指定的文件 private void indexFile(File file) throws Exception { System.out.println("索引文件的路径:"+file.getCanonicalPath()); Document doc=getDocument(file);//获取该文件的document writer.addDocument(doc);//调用下面的getDocument方法,将doc添加到索引中 } //获取文档,文档里再设置每个字段,就类似于数据库中的一行记录 private Document getDocument(File file) throws Exception { Document doc=new Document(); //添加字段 doc.add(new TextField("contents",new FileReader(file)));//添加内容 doc.add(new TextField("fileName", file.getName(),Field.Store.YES));//添加文件名,并把这个字段存到索引文件里 doc.add(new TextField("fullPath", file.getCanonicalPath(),Field.Store.YES));//添加文件路径 return doc; } public static void main(String[] args){ String indexDir="D:\lucene";//将索引保存到的路径 String dataDir="D:\lucene\data";//需要索引的文件数据存放的目录 Indexer indexer=null; int indexedNum=0; long startTime=System.currentTimeMillis();//记录索引开始时间 try{ indexer=new Indexer(indexDir); indexedNum=indexer.indexAll(dataDir); }catch(Exception e){ e.printStackTrace(); }finally{ try { indexer.close(); } catch (Exception e) { e.printStackTrace(); } } long endTime=System.currentTimeMillis();//记录索引结束时间 System.out.println("索引共耗时"+(endTime-startTime)+"毫秒"); System.out.println("共索引了"+indexedNum+"个文件"); } }
我是按照建立索引的过程来写的程序,在注释中已经解释的很清楚了,这里就不再赘述了。然后运行一下main方法看一下结果,如下:
共索引了3个文件,耗时375毫秒,还是蛮快的,而且索引文件的路径也是对的,然后可以看一下D:lucene会生成一些文件,这些
就是生成的索引。 当你继续执行一次 建立索引 又会生成共6个文件
现在有了索引了,我们可以检索想要查询的字符了,我随便打开了一个文件,在里面找了个比较丑的字符串“clothes-that-inexpensive”来作为检索的对象。在检索之前先看一下检索的java代码:
package org.shanheyongmu.cn; import java.nio.file.Paths; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.index.IndexReader; import org.apache.lucene.queryparser.classic.QueryParser; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.Query; import org.apache.lucene.search.ScoreDoc; import org.apache.lucene.search.TopDocs; import org.apache.lucene.store.Directory; import org.apache.lucene.store.FSDirectory; public class Searcher { public static void search(String indexDir,String q) throws Exception{ Directory dir=FSDirectory.open(Paths.get(indexDir));//获取要查询的路径,也就是索引所在的位置 IndexReader reader=DirectoryReader.open(dir); IndexSearcher searcher=new IndexSearcher(reader); Analyzer analyzer=new StandardAnalyzer();//标准分词器,会自动去掉空格啊,is a too等单词 QueryParser parser=new QueryParser("contents", analyzer);//查询解析器器 Query query=parser.parse(q);//通过解析要查询的String,获取查询对象 long startTime=System.currentTimeMillis();//记录索引开始时间 TopDocs docs=searcher.search(query, 10);//开始查询,查询前10条数据 将记录在docs中 long endTime=System.currentTimeMillis();//记录索引结束时间 System.out.println("匹配到"+q+"共耗时"+(endTime-startTime)+"毫秒"); System.out.println("查询到"+docs.totalHits+"条记录"); for(ScoreDoc scoreDoc:docs.scoreDocs){//取出每条查询结果 Document doc=searcher.doc(scoreDoc.doc);//scoreDoc.doc相当于docID,根据这个docID来获取文档 System.out.println(doc.get("fullPath"));//fullPath是刚刚建立索引的时候我们定义的一个字段 } reader.close(); } public static void main(String[] args){ String indexDir="D:\lucene"; String q="clothes-that-inexpensive";//查询这个字符串 try{ search(indexDir, q); }catch(Exception e){ e.printStackTrace(); } } }
Lucene已经正确的帮我们检索到了,然后我把中间的“-”去掉,它也能帮我们检索到,但是我把前面的字符都去掉,只留下“pensive”就检索不到了,这也能说明Lucene中建立索引是以单词来划分的,但是这个问题是可以解决的,我会在后续的文章中写到。
本篇参考csdn eson