2.1.101. --littleend 此选项指示编译器使用小端内存为 ARM 处理器生成代码。 在小端内存中,字的最低有效字节具有最低地址。 缺省设置 除非显式指定 --bigend,否则编译器将采用 --littleend。 2.1.14. --bigend 此选项指示编译器使用大端内存为 ARM 处理器生成代码。 ARM 体系结构定义以下两种不同的大端模式: BE8 字节固定寻址模式(ARMv6 及更高版本)。 BE32 旧大端模式。 在链接时指定是选择 BE8 还是 BE32。 缺省设置 除非显式指定 --bigend,否则编译器将采用 --littleend。 2.1.5. --be8 此选项指定 ARMv6 字节固定寻址大端模式。 这是 ARMv6 大端映像的缺省字节寻址模式,意味着链接器反转指令的端标记, 提供已按大端模式编译/汇编的输入对象的小端代码和大端数据。 字节固定寻址模式只在支持 ARMv6 和更高版本的 ARM 处理器上可用。 2.1.6. --be32 此选项指定旧的字固定寻址大端模式,即与 ARMv6 之前的大端映像相同。 这会生成大端代码和数据。 字固定寻址模式是所有 ARMv6 之前的大端映像的缺省模式。 ARM1156T2-S Technical Reference Manual Revision: r0p4 Differences between BE-32 and BE-8 buses 6.5.1. Differences between BE-32 and BE-8 buses The differences between handling Word-Invariant, or BE-32, and Byte-Invariant, or BE-8, data buses are: In a BE-32, Word-Invariant, system, the representation of a 32-bit Word access is the same between a BE-32 access and a LE access to the same word address. However, the representation of the byte (and half-word) accesses on the bus is different. In a BE-8, Byte Invariant, system the representation of a byte access is the same between a BE-8 access and a LE access to the same byte address. However, the representation of the word (and half-word) accesses on the bus is different. In BE-32 and BE-8 implementations of big-endian access, the lowest byte address corresponds to the most significant byte Table 6.4 shows: the effect of LE, BE-8 and BE-32 accesses on a 64 bit wide bus. the basic form that for Byte accesses, LE and BE-8 columns are the same, and for Word accesses LE and BE-32 columns are the same. Note In both the BE-8 and the BE-32 cases, the byte access to address 0 (the lowest address) corresponds to the most significant byte of the word access, so fitting the big-endian description. Table 6.4. Byte lanes used for LE, BE-8 and BE-32 accesses ------------+-------+--------+--------+---------+----------+----------+--------- DataBusPins | Byte Accesses | Halfword Accesses | Word Accesses ------------+-------+--------+--------+---------+----------+----------+--------- | BE-8 | | | BE-32 | ------------+-------+--------+--------+---------+----------+----------+--------- | LE | BE-32 | LE | BE-8 | BE-32 | LE | BE-8 ------------+-------+--------+--------+---------+----------+----------+--------- 63:56 | A7 | A4 | A6:MS | A6:LS | A4:MS | A4:MS | A4:LS 55:48 | A6 | A5 | A6:LS | A6:MS | A4:LS | A4:MS-1 | A4:LS+1 47:40 | A5 | A6 | A4:MS | A4:LS | A6:MS | A4:LS+1 | A4:MS-1 39:32 | A4 | A7 | A4:LS | A4:MS | A6:LS | A4:LS | A4:MS ------------+-------+--------+--------+---------+----------+----------+--------- 31:24 | A3 | A0 | A2:MS | A2:LS | A0:MS | A0:MS | A0:LS 23:16 | A2 | A1 | A2:LS | A2:MS | A0:LS | A0:MS-1 | A0:LS+1 15:8 | A1 | A2 | A0:MS | A0:LS | A2:MS | A0:LS+1 | A0:MS-1 7:0 | A0 | A3 | A0:LS | A0:MS | A2:LS | A0:LS | A0:MS ------------+-------+--------+--------+---------+----------+----------+--------- A<Num> Byte access to address[2:0] = Num A<Num>:<Byte> Byte <Byte> of Word/Half-word access to address[2:0]=Num MS Most significant byte MS-1 Second most significant byte LS+1 Second least significant byte LS Least significant byte ARM7TDMI Technical Reference Manual Revision: r4p1 Home > Programmer’s Model > Memory formats 2.3. Memory formats The ARM7TDMI processor views memory as a linear collection of bytes numbered in ascending order from zero. For example: bytes zero to three hold the first stored word bytes four to seven hold the second stored word. The ARM7TDMI processor is bi-endian and can treat words in memory as being stored in either: Little-endian. Big-endian Note Little-endian is traditionally the default format for ARM processors. The endian format of a CPU dictates where the most significant byte or digits must be placed in a word. Because numbers are calculated by the CPU starting with the least significant digits, little-endian numbers are already set up for the processing order. Endian configuration has no relevance unless data is stored as words and then accessed in smaller sized quantities (halfwords or bytes). 2.3.1. Little-endian In little-endian format, the lowest addressed byte in a word is considered the least-significant byte of the word and the highest addressed byte is the most significant. So the byte at address 0 of the memory system connects to data lines 7 through 0. For a word-aligned address A, Figure 2.1 shows how the word at address A, the halfword at addresses A and A+2, and the bytes at addresses A, A+1, A+2, and A+3 map on to each other when the core is configured as little-endian. 2.3.2. Big-endian In big-endian format, the ARM7TDMI processor stores the most significant byte of a word at the lowest-numbered byte, and the least significant byte at the highest-numbered byte. So the byte at address 0 of the memory system connects to data lines 31 through 24. For a word-aligned address A, Figure 2.2 shows how the word at address A, the halfword at addresses A and A+2, and the bytes at addresses A, A+1, A+2, and A+3 map on to each other when the core is configured as big-endian. IAR C/C++ Compiler and Assembler. Target options The Target options specify target-specific features for the IAR C/C++ Compiler and Assembler. Endian mode Selects the byte order for your project: Little The lowest byte is stored at the lowest address in memory. The highest byte is the most significant; it is stored at the highest address. Big The lowest address holds the most significant byte, while the highest address holds the least significant byte. Choose between two variants of the big-endian mode: BE8 to make data big-endian and code little-endian BE32 to make both data and code big-endian. http://sd-10807.dedibox.fr/show_items-feed=01a46856a67ba7423eaf4165276e1845 ARM11 BE8 and BE32 Date: Thursday, 08 Apr 2010 02:21 What’s difference between BE8 and BE32? BE-32 is supported by ARM cores up to the ARM11 family (v6) (for example ARM7TDMI, ARM926EJ-S, ARM1136JF-S). It is enabled by setting a bit in the CP15 system control coprocessor. BE-8 is supported by the ARM11 family and later (for example ARM1136JF-S, Cortex-R4, Cortex-A8). Architecture v7 cores do not support BE-32. It is controlled by setting a bit in the CPSR. Setting both bits is reserved (not a valid configuration). In terms of data access: BE-8 is byte invariant endianness BE-32 is word invariant endianness This is easiest to see with examples. I’ve starred **** the important ones: Basic endianness: Consider a word stored 0x11223344 where "11" is the most significant byte. Little endian: Big endian: Address 0 1 2 3 Address 0 1 2 3 Data 44 33 22 11 Data 11 22 33 44 BE-32 and BE-8 //------------------------------------------------------------------------------ Now consider data stored like this: //------------------------------------------------------------------------------ Address 0 1 2 3 Data 11 22 33 44 //------------------------------------------------------------------------------ // Core in little-endian //------------------------------------------------------------------------------ Core in little-endian mode makes word access to address 0: LDR r0, [0] r0 contains 0x44332211 Data loaded to register as little endian //------------------------------------------------------------------------------ Core in little-endian mode makes byte access to address 0: LDRB r0, [0] r0 contains 0x00000011 Data loaded from 0 //------------------------------------------------------------------------------ Core in little-endian mode makes byte access to address 3: LDRB r0, [3] r0 contains 0x00000044 Data loaded from 3 //------------------------------------------------------------------------------ // Core in BE-32 //------------------------------------------------------------------------------ Core in BE-32 mode makes word access to address 0: LDR r0, [0] r0 contains 0x44332211 Word accesses are endianness-invariant //------------------------------------------------------------------------------ ****Core in BE-32 mode makes word access to address 0: LDRB r0, [0] r0 contains 0x00000044 Byte access in BE-32 reads the word as if it was stored big-endian //------------------------------------------------------------------------------ Core in BE-32 mode makes word access to address 3: LDRB r0, [1] r0 contains 0x00000011 As above //------------------------------------------------------------------------------ // Core in BE-8 //------------------------------------------------------------------------------ ****Core in BE-8 mode makes word access to address 0: LDR r0, [0] r0 contains 0x11223344 Data loaded to register as big endian //------------------------------------------------------------------------------ Core in BE-8 mode makes byte access to address 0: LDRB r0, [0] r0 contains 0x00000011 Byte at address 0 is loaded, NOT the byte at address 3 //------------------------------------------------------------------------------ Core in BE-8 mode makes byte access to address 3: LDRB r0, [3] r0 contains 0x00000044 Byte at address 3 is loaded. Essentially BE-32 operates by altering the addresses of memory accesses when accessing subword quantities. This gives the appearances of big endian. //------------------------------------------------------------------------------ // Word Invariant/ Byte Invariant //------------------------------------------------------------------------------ 什么是word invariant ? 就是按word去访问时,数据总线上的对应的存储区域的地址是一一对应的; 什么是byte invariant ? 就是按byte去访问时,数据总线上的对应的存储区域的地址是一一对应的;