• 第二周<线性回归>


    可行性分析####

    sklearn.linear_model.linear_regression()

    一些参数

    • fit_intercept 布尔型参数,表示是否计算该模型的截距
    • normalize 布尔型参数,若为TRUE,则X在回归前进行归一化,默认False

    可以查看系数###

    linear.coef_
    linear.intercept_

    # -*- coding: utf-8 -*-
    """
    Created on Sat May 27 12:04:03 2017
    
    @author: sfzyk
    """
    
    import numpy as np
    import matplotlib.pyplot as plt
    import os
    from sklearn.linear_model import LinearRegression
    os.chdir(r"d:mechine_learningmooc_data")
    f=open("prices.txt",'r')
    lines=f.readlines()
    
    data_x=[]
    data_y=[]
    
    for line in lines:
        #print(line)
        items=line.strip()
        strs=items.split(',')
        data_x.append(int(strs[0]))
        data_y.append(int(strs[1]))
    
    leng=len(data_x)
    data_x=np.array(data_x).reshape((leng,1))
    #同是一维的但是data_x 和data_y的格式要求不一样
    data_y=np.array(data_y)
    
    minx=min(data_x)
    maxx=max(data_x)
    x=np.linspace(minx,maxx,100)
    
    linear=LinearRegression()
    
    linear.fit(data_x,data_y)
    
    plt.scatter(data_x,data_y,'r')
    
    plt.plot(x,linear.predict(x.reshape(-1,1)),'-b')
    
    

    加入高次项特征###

    # -*- coding: utf-8 -*-
    """
    Created on Sat May 27 12:59:12 2017
    
    @author: sfzyk
    """
    
    from sklearn.preprocessing import PolynomialFeatures
    import matplotlib.pyplot as plt
    import os
    import numpy as np
    from sklearn.linear_model import LinearRegression
    os.chdir("d:mechine_learningmooc_data")
    f=open("prices.txt",'r')
    lines=f.readlines()
    
    data_x=[]
    data_y=[]
    
    for line in lines:
        #print(line)
        items=line.strip()
        strs=items.split(',')
        data_x.append(int(strs[0]))
        data_y.append(int(strs[1]))
    leng=len(data_x)
    data_x=np.array(data_x).reshape((leng,1))
    
    minx=min(data_x)
    maxx=max(data_x)
    x=np.linspace(minx,maxx,100)
    
    
    poly_reg=PolynomialFeatures(degree=2)
    x_poly=poly_reg.fit_transform(data_x)
    
    linear=LinearRegression()
    linear.fit(x_poly,data_y)
    
    plt.scatter(data_x,data_y,color='red')
    
    plt.plot(x,linear.predict(poly_reg.fit_transform(x.reshape((-1,1)))),'-b')
    
    
    
    
    
    
  • 相关阅读:
    IE、chrome、火狐中如何调试javascript脚本
    RFS_oracle的操作
    python_操作oracle数据库
    RFS_窗口或区域之间的切换
    RFS_关键字
    python_遇到问题
    python_GUI
    python_文件
    python之深浅拷贝
    python之编码和解码
  • 原文地址:https://www.cnblogs.com/sfzyk/p/6912366.html
Copyright © 2020-2023  润新知