数据类型操作##
如何改变Series/ DataFrame 对象###
- 增加或重排:重新索引
- 删除:drop
重新索引 .reindex()####
reindex() 能够改变或重排Series和DataFrame索引
d.reindex(['c5','c4','v3','v2','c1'])
这样是改变index的顺序
d.reindex(column=['同比',...]
这样是改变column的顺序
.reincdex() 的参数#####
index,columns 新的行列顺序
fill_value 重新索引中,用于填充缺失位置的值
method 填充方法,ffill 向前填充,bfill 向后填充
limit 最大填充量
copy 默认True,生成新的对象
- 一个小例子,新增一列
newc=d.colimns.insert(4,'新增’)
newd=d.reindex(columns=newc,fill_value=200)
pandas 的索引类型(index)#####
.index .columns
index对象是一个不可修改的类型
+索引类型的常用操作
方法 | 说明 |
---|---|
.append(ids) | 链接另一个Index对象,产生新的Index对象 |
.diff(dix) | 计算两个Index的差集 |
.intersection(dix) | 计算两个Index的交集 |
.union() | 计算两个Index的并集 |
.delete(loc) | 删除loc位置的元素 |
.insert(loc,e) | 在loc位置增加一个元素e |
通过操作索引可以操作数据类型
删除指定索引对象####
a=pd.Series([9,8,7,6],index=['a','b','c','d'])
a.drop(['b','c'])
使用drop方法删除了这一部分数值(删除某一个index(row))
d.drop(['同比], axis=1) 这样给出axis就可以删除列了。
0 轴是操作index(row)
1 轴是操作column
pandas的数据类型运算###
Series DataFram算术运算face
根据行列索引运算,补齐后运算,运算默认产生浮点数
补齐时缺失项填充NAN
二维和一维 一维和0惟 间进行boradcast
采用+-*/符号时产生新的运算对象
- 例子
a=pd.DataFrame(np.arange(12).reshape(3,4))
b=pd.DataFrame(np.arange(20).reshape(4,5))
a+b 补齐的都是NAN
方法形式的运算####
方法 | 说明 |
---|---|
.add(d,**argws) | 类型间加法运算可选参数 |
.sub | |
.mul | |
.div |
使用方法好处是可以增加可选参数
fill_value= 补齐的时候使用fill_value来补齐
一维默认在轴一(row)参与运算,
b中给的每一个index(row) 减去a
如果希望在零轴上 (column) b 中的每一个column减去 a
比较运算####
只比较相同索引的元素,不补齐
不同维度的boradcast 默认时1轴(每一个index(row) 都作用到a))上