• 【leetcode】427. Construct Quad Tree


    题目如下:

    We want to use quad trees to store an N x N boolean grid. Each cell in the grid can only be true or false. The root node represents the whole grid. For each node, it will be subdivided into four children nodes until the values in the region it represents are all the same.

    Each node has another two boolean attributes : isLeaf and valisLeaf is true if and only if the node is a leaf node. The val attribute for a leaf node contains the value of the region it represents.

    Your task is to use a quad tree to represent a given grid. The following example may help you understand the problem better:

    Given the 8 x 8 grid below, we want to construct the corresponding quad tree:

    It can be divided according to the definition above:

    The corresponding quad tree should be as following, where each node is represented as a (isLeaf, val) pair.

    For the non-leaf nodes, val can be arbitrary, so it is represented as *.

    Note:

    1. N is less than 1000 and guaranteened to be a power of 2.
    2. If you want to know more about the quad tree, you can refer to its wiki.

    解题思路:递归,不是叶子节点就继续拆分成上下左右四个子节点。

    代码如下:

    """
    # Definition for a QuadTree node.
    class Node(object):
        def __init__(self, val, isLeaf, topLeft, topRight, bottomLeft, bottomRight):
            self.val = val
            self.isLeaf = isLeaf
            self.topLeft = topLeft
            self.topRight = topRight
            self.bottomLeft = bottomLeft
            self.bottomRight = bottomRight
    """
    class Solution(object):
        def construct(self, grid):
            """
            :type grid: List[List[int]]
            :rtype: Node
            """
            def check(tl_x,tl_y,br_x,br_y):
                count = 0
                for i in range(tl_x,br_x):
                    for j in range(tl_y,br_y):
                        count += grid[i][j]
                if count == 0:
                    return 0
                elif count == (br_x - tl_x) * (br_y - tl_y):
                    return 1
                return -1
    
            def connect(parent,child,direction):
                if direction == 'TL':
                    parent.topLeft = child
                if direction == 'TR':
                    parent.topRight = child
                if direction == 'BL':
                    parent.bottomLeft = child
                if direction == 'BR':
                    parent.bottomRight = child
    
            def recursive(tl_x,tl_y,br_x,br_y,parent,direction):
                if check(tl_x,tl_y,br_x,br_y) == 0:
                    node = Node(0,True,None,None,None,None)
                    if self.root == None:
                        self.root = node
                    else:
                        connect(parent,node,direction)
                elif check(tl_x,tl_y,br_x,br_y) == 1:
                    node = Node(1,True,None,None,None,None)
                    if self.root == None:
                        self.root = node
                    else:
                        connect(parent,node,direction)
                else:
                    node = Node('*',False,None,None,None,None)
                    mid_x = (br_x + tl_x)/2
                    mid_y = (br_y + tl_y)/2
                    if self.root == None:
                        self.root = node
                    else:
                        connect(parent,node,direction)
                    recursive(tl_x,tl_y,mid_x,mid_y,node,'TL')
                    recursive(tl_x, mid_y, mid_x, br_y, node, 'TR')
                    recursive(mid_x, tl_y, br_x, mid_y , node, 'BL')
                    recursive(mid_x, mid_y, br_x, br_y, node, 'BR')
    
            self.root = None
            recursive(0,0,len(grid),len(grid[0]),None,'')
    
            return self.root
  • 相关阅读:
    把CentOS改成中文
    String,StringBuffer,StringBuilder三者性能对比
    在Linux上部署安装C/C++开发环境
    Kali Linux安装ssh服务
    Kali VirtualBox安装增强功能
    CentOS安装docker
    CentOS安装jdk11
    Java基本数据类型
    奥卡姆剃刀定律在Java代码中的体现——记一次LeetCode刷题心得
    Java 实现简易登录注册功能
  • 原文地址:https://www.cnblogs.com/seyjs/p/12082545.html
Copyright © 2020-2023  润新知