• UE4 常用数学


    转自:https://dawnarc.com/2016/07/mathlinear-algebra%E5%90%91%E9%87%8F%E7%A7%AF%E5%A4%96%E7%A7%AF%E5%8F%89%E7%A7%AF%E4%B8%8E%E6%95%B0%E9%87%8F%E7%A7%AF%E5%86%85%E7%A7%AF%E7%82%B9%E7%A7%AF/

    一、向量积(外积、叉积)与数量积(内积、点积)

    原理

    叉积 http://baike.baidu.com/view/973423.htm

    点积 http://baike.baidu.com/view/2744555.htm

    两向量的叉乘(叉积、外积)仍然是一个向量:

    1. 这个向量的大小为原两向量模的乘积乘以其夹角的正弦值,也就是说在数值上等于两向量平移后形成的平行四边形的面积。
    2. 这个向量的方向是与两个原向量都垂直的方向,其指向用右手准则来判断。
      参考自:https://www.zhihu.com/question/22902370
    右手法则

    叉乘右手法则:
    当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。

    参考自:https://zhidao.baidu.com/question/98443003.html

    返回值范围

    点积(数量积)返回值范围:

    两个普通向量点积返回值可以是无限大或无限小,两个单位向量点积返回值的范围大小:(-1, 1)。

    以UE4数学函数为例,FVector::DotProduct(V1, V2) / (V1.Size() * V2.Size())等价于FVector::DotProduct(V1.GetSafeNormal(), V2.GetSafeNormal())

    差积(向量积)返回值范围:

    向量积|c| = |a x b| = |a| |b| sin<a, b>
    即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。
    而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

    向量叉乘与叉乘矩阵

    向量叉乘与叉乘矩阵
    https://www.cnblogs.com/monoSLAM/p/5349497.html

    UE4中的点积、叉积函数

    UE4的叉积(向量积、外积)函数:

    FVector::CrossProduct()

    UE4的点积(数量积、内积)函数:

    FVector::DotProduct()

    具体代码示例

    FVector V1(100.f, 0.f, 0.f);
    FVector V2 = FRotator(0.f, 30.f, 0.f).RotateVector(V1);
    FVector V3 = FRotator(0.f, 45.f, 0.f).RotateVector(V1);
    FVector V4 = FRotator(0.f, 60.f, 0.f).RotateVector(V1);
    
    float d1 = FVector::DotProduct(V2, V3);
    float d2 = FVector::DotProduct(V3, V2);
    float d3 = FVector::DotProduct(V3, V4);
    float d4 = FVector::DotProduct(V2, V4);

    其中各个值为:

    V2 = (86.6f, 50.f, 0.f)
    V3 = (70.7f, 70.7f, 0.f)
    V4 = (50.f, 86.6f, 0.f)
    d1 = 9659.25781
    d2 = 9659.25781
    d3 = 9659.25781
    d4 = 8660.25391

    二、已知方向向量,求该向量与空间坐标轴的夹角

    原始的数学公式不列举了,需要的话找个Math库看下源码。这里以UE4的API说明:

    情况一:已知两个坐标点,求连线与空间坐标的夹角

    已知空间中两个点FVector V1, V2,方向向量V3 = V2 - V1,求V3与空间坐标的夹角:

    FRotator R = (V2 - V1).Rotation();
    情况二:单个向量与世界坐标的夹角

    已知方向向量Vector V1,求V1与空间坐标轴的夹角Rotator R1:即将Vector转换为Rotator

    FRotator R1 = FVector(100.f, 100.f, 0.f).Rotation();
    FRotator R2 = FVector(-100.f, -100.f, 0.f).Rotation();
    FRotator R3 = FVector(100.f, 0.f, 0.f).Rotation();
    FRotator R4 = FVector(0.f, 100.f, 0.f).Rotation();

    结果分别是:

    R1 = {Pitch=0.0 Yaw=45.0 Roll=0.0 }
    R2 = {Pitch=0.0 Yaw=-135.0 Roll=0.0 }
    R3 = {Pitch=0.0 Yaw=0.0 Roll=0.0 }
    R4 = {Pitch=0.0 Yaw=90.0 Roll=0.0 }

    FVector::Rotation()函数的内部实现(局部):

    FRotator R;
    
    // Find yaw.
    R.Yaw = FMath::Atan2(Y,X) * (180.f / PI);
    
    // Find pitch.
    R.Pitch = FMath::Atan2(Z,FMath::Sqrt(X*X+Y*Y)) * (180.f / PI);
    
    // Find roll.
    R.Roll = 0;
    
    return R;
    情况三:两个空间向量的夹角度数
    FVector V1 = ...;
    FVector V2 = ...;
    float Angle = FMath::RadiansToDegrees(acosf(FVector::DotProduct(V1.GetSafeNormal(), V2.GetSafeNormal())));

    运算结果值的范围为:0到180。

    求点积时的两个向量一定要是单位向量,否则计算结果会大于Pi(正常范围是0到Pi)。

    三、基于某点向某方向上投射指定距离后的坐标计算

    代码:

    float Len = FMath::Sqrt(100 * 100 + 100 * 100);
    FVector Loc = FVector(100.f, 100.f, 0.f) + FRotator(0.f, 45.f, 0.f).Vector() * Len;

    结果:

    Loc = {X=200.f, Y=200.f, Z=0.f}

    FRotator::Vector()对应的蓝图函数为GetRotationXVector

    =================================

    例子2:

    float Len = FMath::Sqrt(100 * 100 + 100 * 100);
    FVector Loc1 = FVector(0.f, 0.f, 0.f) + FRotator(0.f, 45.f, 0.f).Vector() * Len;
    FVector Loc2 = FVector(0.f, 0.f, 0.f) + FRotator(0.f, 135.f, 0.f).Vector() * Len;
    FVector Loc3 = FVector(0.f, 0.f, 0.f) + FRotator(0.f, 225.f, 0.f).Vector() * Len;
    FVector Loc4 = FVector(0.f, 0.f, 0.f) + FRotator(0.f, 315.f, 0.f).Vector() * Len;

    结果:

    Loc1 = {X=100.f, Y=100.f, Z=0.f}
    Loc2 = {X=-100.f, Y=100.f, Z=0.f}
    Loc3 = {X=-100.f, Y=-100.f, Z=0.f}
    Loc4 = {X=100.f, Y=-100.f, Z=0.f}

    四、如何检测某个点是否在多边形内部或者直线上

    点在多边形内的判别方法
    int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
    {
        int i, j, c = 0;
        for (i = 0, j = nvert-1; i < nvert; j = i++) 
        {
            if (((verty[i] > testy) != (verty[j] > testy)) &&
                (testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]) )
            {
                c = !c;
            }
        }
        return c;
    }

    Arguments

    • nvert: Number of vertices in the polygon. Whether to repeat the first vertex at the end has been discussed in the article referred above.
    • vertx, verty: Arrays containing the x- and y-coordinates of the polygon’s vertices.
    • testx, testy: X- and y-coordinate of the test point.

    https://stackoverflow.com/a/2922778/1645289

    点在两点之间的直线上的判别方法
    bool isLieOnLine()
    {
        dxc = currPoint.x - point1.x;
        dyc = currPoint.y - point1.y;
    
        dxl = point2.x - point1.x;
        dyl = point2.y - point1.y;
    
        //point lies on the line if and only if (dxc * dyl - dyc * dxl) is equal to zero.
        bool isCrossLine = dxc * dyl - dyc * dxl == 0;
    
        if(isCrossLine)
        {
            if (abs(dxl) >= abs(dyl))
              return dxl > 0 ? 
                point1.x <= currPoint.x && currPoint.x <= point2.x :
                point2.x <= currPoint.x && currPoint.x <= point1.x;
            else
              return dyl > 0 ? 
                point1.y <= currPoint.y && currPoint.y <= point2.y :
                point2.y <= currPoint.y && currPoint.y <= point1.y;
        }
    
        return false;
    }

    https://stackoverflow.com/a/11908158/1645289

    参考

    How to check if a given point lies inside or outside a polygon?
    http://www.geeksforgeeks.org/how-to-check-if-a-given-point-lies-inside-a-polygon/

    How to check if a point is inside a rectangle?
    http://math.stackexchange.com/questions/190111/how-to-check-if-a-point-is-inside-a-rectangle

    How can I determine whether a 2D Point is within a Polygon?
    http://stackoverflow.com/questions/217578/how-can-i-determine-whether-a-2d-point-is-within-a-polygon#

    How to check if a point lies on a line between 2 other points
    https://stackoverflow.com/questions/11907947/how-to-check-if-a-point-lies-on-a-line-between-2-other-points

    Check if a point belongs on a line segment
    https://www.lucidar.me/en/mathematics/check-if-a-point-belongs-on-a-line-segment/

    五、两个旋转矩阵(Rotation Matrix)相乘(Multiply)的几何意义

    讲之前,先说下如果两个Rotation相加的意义,比如:

    FRotator Rot1(0.f, 90.f, 0.f);
    FRotator Rot2(90.f,0.f, 0.f);
    FRotator Result = Rot1 + Rot2;

    得到的结果FRotator Result(90.f, 90.f, 0.f),其意义是: 物体相对空间坐标原点的Rotation为(90.f, 90.f, 0.f),很好理解。

    如果两个Rotation转换为Martix并相乘,比如:

    FRotator Rot1(0.f, 90.f, 0.f);
    FRotator Rot2(90.f,0.f, 0.f);
    FRotator Result =( FRotationMatrix(Rot1) * FRotationMatrix(Rot2)).Rotator();

    得到的结果FRotator Result(0.f, 90.f, 90.f),其意义是: 先将物体作Rot1旋转,即:Yaw方向(水平平面)旋转90度,然后再假设该物体相对坐标轴原点的旋转量为(0, 0, 0),即没有作任何旋转,但实际Rotation相对坐标轴原点为(0, 90, 0);然后再将物体进行Rot2旋转,即Pitch方向(垂直于(90, 0, 0)方向的平面)侧翻90度,因为侧翻90度前假设物体的Rotation是(0, 0, 0),所以侧翻时所在的平面不再是Yaw=90的平面(垂直于(0, 90, 0)方向),而是Yaw=0的平面(垂直于(90, 0, 0)方向)。没做相关配图,这段话理解起来有点绕,最好用空间思维想象下,可以用手掌比划。

    实际应用:

    比如空间中有两个物体:A和B,现在要将A旋转至与B相同的朝向,目前只知道A的相对世界坐标的Rotation Rw(90.f,0.f, 0.f)、B相对A(将A的Rotation当做(0, 0, 0))的Rotation Rr(0.f, 90.f, 0.f),求A旋转后的世界坐标Rotation。
    此时的计算公式就是:

    (FRotationMatrix(Rr) * FRotationMatrix(Rw)).Rotator()

    注意:矩阵相乘时,两个乘数的前后位置不同则计算的结果也不同,比如上面例子,如果是( FRotationMatrix(Rot2) * FRotationMatrix(Rot1)).Rotator,则结果是Rotation(90, -90, -180)。

    一个典型应用:以UE4为例,当角色移动时,不能将默认MoveForward的实参(比如(1.0, 0.f, 0.f))和MoveRight的实参(比如(0.0, 1.f, 0.f))传递给AddMovementInput,因为InputValue需要相对摄像机的朝向来计算,否则当按下W键,期望角色摄像机正对方向移动,但实际是侧向移动。此时就可以通过旋转矩阵相乘来获取当前摄像机朝向方向下的MoveForwardMoveRight方向。

    FRotator AMyPlayerController::GetInputRotationInWorld()
    {
        FRotator Ret = FRotator::ZeroRotator;
        if (AMyCharacter* Player = Cast<AMyCharacter>(GetPawn()))
        {
            if(UCameraComponent* CameraComp = Player->GetFollowCamera())
            {
                FRotator InputRotLS = FVector(ForwardInputValue, RighInputInputValue, 0.f).Rotation();
                FRotator CameraRotWS = FRotator(0.f, CameraComp->GetComponentRotation().Yaw, 0.f);
                Ret = (FRotationMatrix(InputRotLS) * FRotationMatrix(CameraRotWS)).Rotator();
            }
        }
    
        return Ret;
    }
    Video Tutorials

    Linear transformations and matrices | Essence of linear algebra, chapter 3
    https://www.youtube.com/watch?v=kYB8IZa5AuE

    六、抛物线Parabola movement

    header

    AStaticMeshActor* TestCube = nullptr;
    
    //throw speed
    UPROPERTY(EditDefaultsOnly)
    FVector StartForce = FVector(100.f, 100.f, 2000.f);
    
    //gravitational acceleration
    float GravityAcclerator = -980.f;
    
    //accumulated movtion time
    float AccumulateTime = 0.f;

    cpp

    void ATestTPGameMode::StartPlay()
    {
        Super::StartPlay();
    
        //finding the Actor in scene.
        for (TActorIterator<AStaticMeshActor> Iter(GetWorld()); Iter; ++Iter)
        {
            if (Iter->GetName() == TEXT("Cube_2"))
            {
                TestCube = *Iter;
                break;
            }
        }
    }
    
    void ATestTPGameMode::Tick(float DeltaSeconds)
    {
        Super::Tick(DeltaSeconds);
    
        AccumulateTime += DeltaSeconds;
    
        //calculate gravitational speed in real time.
        float ZSpeed = GravityAcclerator * AccumulateTime;
    
        //calculate summation speed of gravitational speed and throw speed.
        FVector CurrSpeed = StartForce + FVector(0.f, 0.f, ZSpeed) ;
    
        //calculate movement distance in real time.
        FVector MoveDist = CurrSpeed * DeltaSeconds;
    
        //set relative location.
        TestCube->AddActorWorldOffset(MoveDist, true);
    }

    七、空间点到直线垂足坐标的解算方法

    算法1

    原文:https://blog.csdn.net/zhouschina/article/details/14647587

    假设空间某点O的坐标为(Xo,Yo,Zo),空间某条直线上两点A和B的坐标为:(X1,Y1,Z1),(X2,Y2,Z2),设点O在直线AB上的垂足为点N,坐标为(Xn,Yn,Zn)。点N坐标解算过程如下: 首先求出下列向量:

       

    由向量垂直关系(公式1

           

    点N在直线AB上,根据向量共线(公式2):

          

    公式2得(公式3):

    公式3式代入公式1式,式中只有一个未知数k,整理化简解出k(公式4):

    公式4式代入公式3式即得到垂足N的坐标。

    二维空间

    // 二维空间点到直线的垂足
    struct Point
    {
      double x,y;
    }
    Point GetFootOfPerpendicular(
        const Point &pt,     // 直线外一点
        const Point &begin,  // 直线开始点
        const Point &end)   // 直线结束点
    {
        Point retVal;
    
        double dx = begin.x - end.x;
        double dy = begin.y - end.y;
        if(abs(dx) < 0.00000001 && abs(dy) < 0.00000001 )
        {
            retVal = begin;
            return retVal;
        }
    
        double u = (pt.x - begin.x)*(begin.x - end.x) +
            (pt.y - begin.y)*(begin.y - end.y);
        u = u/((dx*dx)+(dy*dy));
    
        retVal.x = begin.x + u*dx;
        retVal.y = begin.y + u*dy;
    
        return retVal;
    }

    三维空间

    // 三维空间点到直线的垂足
    struct Point
    {
      double x,y,z;
    }
    Point GetFootOfPerpendicular(
        const Point &pt,     // 直线外一点
        const Point &begin,  // 直线开始点
        const Point &end)   // 直线结束点
    {
        Point retVal;
    
        double dx = begin.x - end.x;
        double dy = begin.y - end.y;
      double dz = begin.z - end.z;
        if(abs(dx) < 0.00000001 && abs(dy) < 0.00000001 && abs(dz) < 0.00000001 )
        {
            retVal = begin;
            return retVal;
        }
    
        double u = (pt.x - begin.x)*(begin.x - end.x) +
            (pt.y - begin.y)*(begin.y - end.y) + (pt.z - begin.z)*(begin.z - end.z);
        u = u/((dx*dx)+(dy*dy)+(dz*dz));
    
        retVal.x = begin.x + u*dx;
        retVal.y = begin.y + u*dy;
      retVal.y = begin.z + u*dz;
      
        return retVal;
    }
    算法2

    原文:3D Perpendicular Point on Line From 3D point
    https://stackoverflow.com/questions/9368436/3d-perpendicular-point-on-line-from-3d-point

    计算p1、p2连成的直线上的离 q 点最近的点 f(即 q 点到直线 p1、p2的垂足坐标):

    XNA实现

    Vector3 p1 = new Vector3(x1, y1, z1);
    Vector3 p2 = new Vector3(x2, y2, z2);
    Vector3 q = new Vector3(x3, y3, z3);
    
    Vector3 u = p2 - p1;
    Vector3 pq = q - p1;
    Vector3 w2 = pq - Vector3.Multiply(u, Vector3.Dot(pq, u) / u.LengthSquared());
    
    Vector3 f = q - w2;

    UE4实现

    FVector GetPerpendicularPointToLine(const FVector& PointStart, const FVector& PointEnd, const FVector& PointPerpendicular)
    {
        FVector Line = PointEnd - PointStart;
        FVector PS = PointPerpendicular - PointStart;
        FVector W2 = PS - (Line * (PS | Line) / Line.SizeSquared());
        FVector FootPoint = PointPerpendicular - W2;
    
        return FootPoint;
    }

    UE4引擎提供的工具函数:

    FVector UKismetMathLibrary::FindClosestPointOnLine(FVector Point, FVector LineOrigin, FVector LineDirection)
    {
        const FVector SafeDir = LineDirection.GetSafeNormal();
        const FVector ClosestPoint = LineOrigin + (SafeDir * ((Point-LineOrigin) | SafeDir));
        return ClosestPoint;
    }
    参考

    Perpendicular on a line segment from a given point
    https://stackoverflow.com/questions/10301001/perpendicular-on-a-line-segment-from-a-given-point

    How do you find a point at a given perpendicular distance from a line?
    https://stackoverflow.com/questions/133897/how-do-you-find-a-point-at-a-given-perpendicular-distance-from-a-line

    八、已知三点求平面方程、平面法向量和点到平面的距离

    原文:https://blog.csdn.net/zhouschina/article/details/8784908

    已知三点p1(x1,y1,z1),p2(x2,y2,z2),p3(x3,y3,z3),要求确定的平面方程。
    关键在于求出平面的一个法向量,为此做向量p1p2(x2-x1,y2-y1,z2-z1), p1p3(x3-x1,y3-y1,z3-z1),平面法线和这两个向量垂直,因此法向量n:

    平面方程:

    a * (x - x1) + b * (y - y1) + c * (z - z1) = 0;
    d = -a * x1 - b * y1 - c * z1;

    平面方程2:

    a * x + b * y + c * z + d=0;

    代码:

    //已知3点坐标,求平面ax+by+cz+d=0; 
    void get_panel(Point p1, Point p2, Point p3, double &a, double &b, double &c, double &d)
    {
        a = ( (p2.y - p1.y) * (p3.z - p1.z) - (p2.z - p1.z) * (p3.y - p1.y) );
    
        b = ( (p2.z - p1.z) * (p3.x - p1.x) - (p2.x - p1.x) * (p3.z - p1.z) );
    
        c = ( (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y) * (p3.x - p1.x) );
    
        d = ( 0 - (a * p1.x + b * p1.y + c * p1.z) );
    }
    
    // 已知三点坐标,求法向量
    Vec3 get_Normal(Point p1, Point p2, Point p3)
    {
        double a = ( (p2.y - p1.y) * (p3.z - p1.z) - (p2.z - p1.z) * (p3.y - p1.y) );
    
        double b = ( (p2.z - p1.z) * (p3.x - p1.x) - (p2.x - p1.x) * (p3.z - p1.z) );
    
        double c = ( (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y) * (p3.x - p1.x) );
    
        return Vec3(a, b, c); 
    }
    
    //点到平面距离 
    double dis_pt2panel(Point pt, double a, double b, double c, double d)
    {
        return f_abs(a * pt.x + b * pt.y + c * pt.z + d) / sqrt(a * a + b * b + c * c);
    }

    UE4提供的工具函数:

    /**
    * Calculate the projection of a point on the plane defined by PlaneBase and PlaneNormal.
    *
    * @param Point The point to project onto the plane
    * @param PlaneBase Point on the plane
    * @param PlaneNorm Normal of the plane (assumed to be unit length).
    * @return Projection of Point onto plane
    */
    static FVector FVector::PointPlaneProject(const FVector& Point, const FVector& PlaneBase, const FVector& PlaneNormal);
    参考

    三维凸包+点到平面距离+已知3点求平面方程
    http://blog.csdn.net/pvpishard/article/details/7912511

    Distance from point to plane
    http://mathinsight.org/distance_point_plane

    点到平面的垂足
    http://blog.csdn.net/threewind/article/details/5980613

  • 相关阅读:
    李洪强经典面试题27
    李洪强经典面试题26(选择题)
    java中InputStream String
    [Android]Android5.0实现静默接听电话功能
    Please verify that your device’s clock is properly set, and that your signing certificate is not exp
    CentOS7虚拟机桥接设置及问题
    GuozhongCrawler系列教程 (5) TransactionRequest具体解释
    js之substr和substring的差别
    hdu 3549 Flow Problem
    JSP与HTML的差别
  • 原文地址:https://www.cnblogs.com/sevenyuan/p/11848576.html
Copyright © 2020-2023  润新知