• 从源码角度学习Java动态代理


    公众号文章链接:https://mp.weixin.qq.com/s/jaLvb21yVHg2R_gJ-JSeVA

    前言

    最近,看了一下关于RMI(Remote Method Invocation)相关的知识,遇到了一个动态代理的问题,然后就决定探究一下动态代理。

    这里先科普一下RMI。

    RMI

    像我们平时写的程序,对象之间互相调用方法都是在同一个JVM中进行,而RMI可以实现一个JVM上的对象调用另一个JVM上对象的方法,即远程调用。

    接口定义

    定义一个远程对象接口,实现Remote接口来进行标记。

    public interface UserInterface extends Remote {
        void sayHello() throws RemoteException;
    }
    

    远程对象定义

    定义一个远程对象类,继承UnicastRemoteObject来实现Serializable和Remote接口,并实现接口方法。

    public class User extends UnicastRemoteObject implements UserInterface {
        public User() throws RemoteException {}
        @Override
        public void sayHello() {
            System.out.println("Hello World");
        }
    }
    

    服务端

    启动服务端,将user对象在注册表上进行注册。

    public class RmiServer {
        public static void main(String[] args) throws RemoteException, AlreadyBoundException, MalformedURLException {
            User user = new User();
            LocateRegistry.createRegistry(8888);
            Naming.bind("rmi://127.0.0.1:8888/user", user);
            System.out.println("rmi server is starting...");
        }
    }
    

    启动服务端:
    在这里插入图片描述

    客户端

    从服务端注册表获取远程对象,在服务端调用sayHello()方法。

    public class RmiClient {
        public static void main(String[] args) throws RemoteException, NotBoundException, MalformedURLException {
            UserInterface user = (UserInterface) Naming.lookup("rmi://127.0.0.1:8888/user");
            user.sayHello();
        }
    }
    

    服务端运行结果:
    在这里插入图片描述
    至此,一个简单的RMI demo完成。

    动态代理

    提出问题

    看了看RMI代码,觉得UserInterface这个接口有点多余,如果客户端使用Naming.lookup()获取的对象不强转成UserInterface,直接强转成User是不是也可以,于是试了一下,就报了以下错误:
    在这里插入图片描述
    似曾相识又有点陌生的$Proxy0,翻了翻尘封的笔记找到了是动态代理的知识点,寥寥几笔带过,所以决定梳理一下动态代理,重新整理一份笔记。

    动态代理Demo

    接口定义

    public interface UserInterface {
        void sayHello();
    }
    

    真实角色定义

    public class User implements UserInterface {
        @Override
        public void sayHello() {
            System.out.println("Hello World");
        }
    }
    

    调用处理类定义

    代理类调用真实角色的方法时,其实是调用与真实角色绑定的处理类对象的invoke()方法,而invoke()调用的是真实角色的方法。

    这里需要实现 InvocationHandler 接口以及invoke()方法。

    public class UserHandler implements InvocationHandler {
        private User user;
        public UserProxy(User user) {
            this.user = user;
        }
        @Override
        public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
            System.out.println("invoking start....");
            method.invoke(user);
            System.out.println("invoking stop....");
            return user;
        }
    }
    

    执行类

    public class Main {
        public static void main(String[] args) {
            User user = new User();
            // 处理类和真实角色绑定
            UserHandler userHandler = new UserHandler(user);
            // 开启将代理类class文件保存到本地模式,平时可以省略
            System.getProperties().put("sun.misc.ProxyGenerator.saveGeneratedFiles", "true");
            // 动态代理生成代理对象$Proxy0
            Object o = Proxy.newProxyInstance(Main.class.getClassLoader(), new Class[]{UserInterface.class}, userHandler);
            // 调用的其实是invoke()
            ((UserInterface)o).sayHello();
        }
    

    运行结果:
    动态代理运行结果
    这样动态代理的基本用法就学完了,可是还有好多问题不明白。

    1. 动态代理是怎么调用的invoke()方法?
    2. 处理类UserHandler有什么作用?
    3. 为什么要将类加载器和接口类数组当作参数传入newProxyInstance?

    假如让你去实现动态代理,你有什么设计思路?

    猜想

    动态代理,是不是和静态代理,即设计模式的代理模式有相同之处呢?

    简单捋一捋代理模式实现原理:真实角色和代理角色共同实现一个接口并实现抽象方法A,代理类持有真实角色对象,代理类在A方法中调用真实角色对象的A方法。在Main中实例化代理对象,调用其A方法,间接调用了真实角色的A方法。

    实现代码

    // 接口和真实角色对象就用上面代码
    // 代理类,实现UserInterface接口
    public class UserProxy implements UserInterface {
    	  // 持有真实角色对象
        private User user = new User();
        @Override
        public void sayHello() {
            System.out.println("invoking start....");
            // 在代理对象的sayHello()里调用真实角色的sayHello()
            user.sayHello();
            System.out.println("invoking stop....");
        }
    }
    // 运行类
    public class Main {
        public static void main(String[] args) {
        	  // 实例化代理角色对象
            UserInterface userProxy = new UserProxy();
            // 调用了代理对象的sayHello(),其实是调用了真实角色的sayHello()
            userProxy.sayHello();
        }
    

    拿开始的动态代理代码和静态代理比较,接口、真实角色都有了,区别就是多了一个UserHandler处理类,少了一个UserProxy代理类。

    接着对比一下两者的处理类和代理类,发现UserHandler的invoke()和UserProxy的sayHello()这两个方法的代码都是一样的。那么,是不是新建一个UserProxy类,然后实现UserInterface接口并持有UserHandler的对象,在sayHello()方法中调用UserHandler的invoke()方法,就可以动态代理了。

    代码大概就是这样的

    // 猜想的代理类结构,动态代理生成的代理是com.sun.proxy.$Proxy0
    public class UserProxy implements UserInterface{
        // 持有处理类的对象
        private InvocationHandler handler;
        public UserProxy(InvocationHandler handler) {
            this.handler = handler;
        }
        // 实现sayHello()方法,并调用invoke()
        @Override
        public void sayHello() {
            try {
                handler.invoke(this, UserInterface.class.getMethod("sayHello"), null);
            } catch (Throwable throwable) {
                throwable.printStackTrace();
            }
        }
    }
    // 执行类
    public static void main(String[] args) {
            User user = new User();
            UserHandler userHandler = new UserHandler(user);
            UserProxy proxy = new UserProxy(userHandler);
            proxy.sayHello();
        }
    

    输出结果:
    在这里插入图片描述

    上面的代理类代码是写死的,而动态代理是当你调用Proxy.newProxyInstance()时,会根据你传入的参数来动态生成这个代理类代码,如果让我实现,会是以下这个流程。

    1. 根据你传入的Class[]接口数组,代理类会来实现这些接口及其方法(这里就是sayHello()),并且持有你传入的userHandler对象,使用文件流将预先设定的包名、类名、方法名等一行行代码写到本地磁盘,生成$Proxy0.java文件
    2. 使用编译器将$Proxy0.java编译成$Proxy0.class
    3. 根据你传入的ClassLoader将$Proxy0.class加载到JMV中
    4. 调用Proxy.newProxyInstance()就会返回一个$Proxy0的对象,然后调用sayHello(),就执行了里面userHandler的invoke()

    以上就是对动态代理的一个猜想过程,下面就通过debug看看源码是怎么实现的。


    在困惑的日子里学会拥抱源码

    拥抱源码

    调用流程图

    这里先用PPT画一个流程图,可以跟着流程图来看后面的源码。

    流程图

    从newProxyInstance()设置断点
    main

    newProxyInstance()

    newProxyInstance()代码分为上下两部分,上部分是获取类$Proxy0.class,下部分是通过反射构建$Proxy0对象。

    上部分代码

    newProxyInstance()

    从名字看就知道getProxyClass0()是核心方法,step into

    getProxyClass0()

    getProxyClass()

    里面调用了WeakCache对象的get()方法,这里暂停一下debug,先讲讲WeakCache类。

    WeakCache

    顾名思义,它是一个弱引用缓存。那什么是是弱引用呢,是不是还有强引用呢?

    弱引用

    WeakReference就是弱引用类,作为包装类来包装其他对象,在进行GC时,其中的包装对象会被回收,而WeakReference对象会被放到引用队列中。

    举个栗子:

     // 这就是强引用,只要不写str1 = null,str1指向的这个字符串不就会被垃圾回收
     String str1 = new String("hello");
     ReferenceQueue referenceQueue = new ReferenceQueue();
     // 只要垃圾回收,这个str2里面包装的对象就会被回收,但是这个弱引用对象不会被回收,即word会被回收,但是str2指向的弱引用对象不会
     // 每个弱引用关联一个ReferenceQueue,当包装的对象被回收,这个弱引用对象会被放入引用队列中
     WeakReference<String> str2 = new WeakReference<>(new String("world"), referenceQueue);
     // 执行gc
     System.gc();
     Thread.sleep(3);
     // 输出被回收包装对象的弱引用对象:java.lang.ref.WeakReference@2077d4de
     // 可以debug看一下,弱引用对象的referent变量指向的包装对象已经为null
     System.out.println(referenceQueue.poll());
    

    WeakCache的结构

    其实整个WeakCache的都是围绕着成员变量map来工作的,构建了一个一个<K,<K,V>>格式的二级缓存,在动态代理中对应的类型是<类加载器, <接口Class, 代理Class>>,它们都使用了弱引用进行包装,这样在垃圾回收的时候就可以直接回收,减少了堆内存占用。

    // 存放已回收弱引用的队列
    private final ReferenceQueue<K> refQueue = new ReferenceQueue<>();
    // 使用ConcurrentMap实现的二级缓存结构
    private final ConcurrentMap<Object, ConcurrentMap<Object, Supplier<V>>> map = new ConcurrentHashMap<>();
    // 可以不关注这个,这个是用来标识二级缓存中的value是否存在的,即Supplier是否被回收
    private final ConcurrentMap<Supplier<V>, Boolean> reverseMap = new ConcurrentHashMap<>();
    // 包装传入的接口class,生成二级缓存的Key
    private final BiFunction<K, P, ?> subKeyFactory = new KeyFactory();
    // 包装$Proxy0,生成二级缓存的Value
    private final BiFunction<K, P, V> valueFactory = new ProxyClassFactory();
    

    WeakCache的get()

    回到debug,接着进入get()方法,看看map二级缓存是怎么生成KV的。

     public V get(K key, P parameter) {
            Objects.requireNonNull(parameter);
            // 遍历refQueue,然后将缓存map中对应的失效value删除
            expungeStaleEntries();
            // 以ClassLoader为key,构建map的一级缓存的Key,是CacheKey对象
            Object cacheKey = CacheK.valueOf(key, refQueue);
            // 通过Key从map中获取一级缓存的value,即ConcurrentMap
            ConcurrentMap<Object, Supplier<V>> valuesMap = map.get(cacheKey);
            if (valuesMap == null) {
                // 如果Key不存在,就新建一个ConCurrentMap放入map,这里使用的是putIfAbsent
                // 如果key已经存在了,就不覆盖并返回里面的value,不存在就返回null并放入Key
                // 现在缓存map的结构就是ConCurrentMap<CacheKey, ConCurrentMap<Object, Supplier>>
                ConcurrentMap<Object, Supplier<V>> oldValuesMap = map.putIfAbsent(cacheKey, valuesMap = new ConcurrentHashMap<>());
                // 如果其他线程已经创建了这个Key并放入就可以复用了
                if (oldValuesMap != null) {
                    valuesMap = oldValuesMap;
                }
            }
            // 生成二级缓存的subKey,现在缓存map的结构就是ConCurrentMap<CacheKey, ConCurrentMap<Key1, Supplier>>
            // 看后面的<生成二级缓存Key>!!!
            Object subKey = Objects.requireNonNull(subKeyFactory.apply(key, parameter));
            // 根据二级缓存的subKey获取value
            Supplier<V> supplier = valuesMap.get(subKey);
            Factory factory = null;
            
    // !!!直到完成二级缓存Value的构建才结束,Value是弱引用的$Proxy0.class!!!
            while (true) {
                // 第一次循环:suppiler肯定是null,因为还没有将放入二级缓存的KV值
            	  // 第二次循环:这里suppiler不为null了!!!进入if
                if (supplier != null) {
                    // 第二次循环:真正生成代理对象,
                    // 往后翻,看<生成二级缓存Value>,核心!!!!!
                    // 看完后面回到这里:value就是弱引用后的$Proxy0.class
                    V value = supplier.get();
                    if (value != null) {
    					        // 本方法及上部分的最后一行代码,跳转最后的<构建$Proxy对象>
                        return value;
                    }
                }
                // 第一次循环:factory肯定为null,生成二级缓存的Value
                if (factory == null) {
                    factory = new Factory(key, parameter, subKey, valuesMap);
                }
                // 第一次循环:将subKey和factory作为KV放入二级缓存
                if (supplier == null) {
                    supplier = valuesMap.putIfAbsent(subKey, factory);
                    if (supplier == null) {
                        // 第一次循环:赋值之后suppiler就不为空了,记住!!!!!
                        supplier = factory;
                    }
                } 
               }
            }
        }
    

    生成二级缓存Key

    在get()中调用subKeyFactory.apply(key, parameter),根据你newProxyInstance()传入的接口Class[]的个数来生成二级缓存的Key,这里我们就传入了一个UserInterface.class,所以就返回了Key1对象。

    KeyFactory.apply()

    不论是Key1、Key2还是KeyX,他们都继承了WeakReference,都是包装对象是Class的弱引用类。这里看看Key1的代码。

    Key1

    生成二级缓存Value

    在上面的while循环中,第一次循环只是生成了一个空的Factory对象放入了二级缓存的ConcurrentMap中。

    在第二次循环中,才开始通过get()方法来真正的构建value。

    别回头,接着往下看。

    Factory.get()生成弱引用value

    CacheValue类是一个弱引用,是二级缓存的Value值,包装的是class,在这里就是$Proxy0.class,至于这个类如何生成的,根据下面代码注释一直看完Class文件的生成

    public synchronized V get() {
                // 检查是否被回收,如果被回收,会继续执行上面的while循环,重新生成Factory
                Supplier<V> supplier = valuesMap.get(subKey);
                if (supplier != this) {
                    return null;
                }
                // 这里的V的类型是Class
                V value = null;
                // 这行是核心代码,看后面<class文件的生成>,记住这里返回的是Class
                value = Objects.requireNonNull(valueFactory.apply(key, parameter));
                // 将Class对象包装成弱引用
                CacheValue<V> cacheValue = new CacheValue<>(value);
                // 回到上面<WeakCache的get()方法>V value = supplier.get();
                return value;
            }
        }
    

    CacheValue

    Class文件的生成

    包名类名的定义与验证

    进入valueFactory.apply(key, parameter)方法,看看class文件是怎么生成的。

     private static final String proxyClassNamePrefix = "$Proxy";
    
     public Class<?> apply(ClassLoader loader, Class<?>[] interfaces) {
                Map<Class<?>, Boolean> interfaceSet = new IdentityHashMap<>(interfaces.length);
                // 遍历你传入的Class[],我们只传入了UserInterface.class
                for (Class<?> intf : interfaces) {
                    Class<?> interfaceClass = null;
                     // 获取接口类
                    interfaceClass = Class.forName(intf.getName(), false, loader);
                     // 这里就很明确为什么只能传入接口类,不是接口类会报错
                    if (!interfaceClass.isInterface()) {
                        throw new IllegalArgumentException(
                            interfaceClass.getName() + " is not an interface");
                    }
                String proxyPkg = null; 
                int accessFlags = Modifier.PUBLIC | Modifier.FINAL;
                for (Class<?> intf : interfaces) {
                    int flags = intf.getModifiers();
                    // 验证接口是否是public,不是public代理类会用接口的package,因为只有在同一包内才能继承
                    // 我们的UserInterface是public,所以跳过
                    if (!Modifier.isPublic(flags)) {
                        accessFlags = Modifier.FINAL;
                        String name = intf.getName();
                        int n = name.lastIndexOf('.');
                        String pkg = ((n == -1) ? "" : name.substring(0, n + 1));
                        if (proxyPkg == null) {
                            proxyPkg = pkg;
                        } else if (!pkg.equals(proxyPkg)) {
                            throw new IllegalArgumentException(
                                "non-public interfaces from different packages");
                        }
                    }
                }
                // 如果接口类是public,则用默认的包
                if (proxyPkg == null) {
                    // PROXY_PACKAGE = "com.sun.proxy";
                    proxyPkg = ReflectUtil.PROXY_PACKAGE + ".";
                }
                // 原子Int,此时num = 0
                long num = nextUniqueNumber.getAndIncrement();
                // com.sun.proxy.$Proxy0,这里包名和类名就出现了!!!
                String proxyName = proxyPkg + proxyClassNamePrefix + num;
                // !!!!生成class文件,查看后面<class文件写入本地> 核心!!!!
                byte[] proxyClassFile = ProxyGenerator.generateProxyClass(proxyName, interfaces, accessFlags);
                // !!!看完下面再回来看这行!!!!
                // 获取了字节数组之后,获取了class的二进制流将类加载到了JVM中
                // 并且返回了$Proxy0.class,返回给Factory.get()来包装
                return defineClass0(loader, proxyName,proxyClassFile, 0, proxyClassFile.length);
               
                }
            }
        }
    

    defineClass0()是Proxy类自定义的类加载的native方法,会获取class文件的二进制流加载到JVM中,以获取对应的Class对象,这一块可以参考JVM类加载器。

    class文件写入本地

    generateProxyClass()方法会将class二进制文件写入本地目录,并返回class文件的二进制流,使用你传入的类加载器加载,这里你知道类加载器的作用了么

     public static byte[] generateProxyClass(final String name,
                                                Class[] interfaces)
        {
            ProxyGenerator gen = new ProxyGenerator(name, interfaces);
            // 生成class文件的二进制,查看后面<生成class文件二进制>
            final byte[] classFile = gen.generateClassFile();
            // 将class文件写入本地		
            if (saveGeneratedFiles) {
                java.security.AccessController.doPrivileged(
                new java.security.PrivilegedAction<Void>() {
                    public Void run() {
                        try {
                            FileOutputStream file =
                                new FileOutputStream(dotToSlash(name) + ".class");
                            file.write(classFile);
                            file.close();
                            return null;
                        } catch (IOException e) {
                            throw new InternalError(
                                "I/O exception saving generated file: " + e);
                        }
                    }
                });
            }
            // 返回$Proxy0.class字节数组,回到上面<class文件生成>
            return classFile;
        }
    

    生成class文件二进制流

    generateClassFile()生成class文件,并存放到字节数组,可以顺便学一下class结构,这里也体现了你传入的class[]的作用

        private byte[] generateClassFile() {
            // 将hashcode、equals、toString是三个方法放入代理类中
            addProxyMethod(hashCodeMethod, Object.class);
            addProxyMethod(equalsMethod, Object.class);
            addProxyMethod(toStringMethod, Object.class);
            for (int i = 0; i < interfaces.length; i++) {
                Method[] methods = interfaces[i].getMethods();
                for (int j = 0; j < methods.length; j++) {
                	// 将接口类的方法放入新建的代理类中,这里就是sayHello()
                    addProxyMethod(methods[j], interfaces[i]);
                }
            }
            for (List<ProxyMethod> sigmethods : proxyMethods.values()) {
                checkReturnTypes(sigmethods);
            }
            // 给代理类增加构造方法
            methods.add(generateConstructor());
            for (List<ProxyMethod> sigmethods : proxyMethods.values()) {
                for (ProxyMethod pm : sigmethods) {
                       // 将上面的四个方法都封装成Method类型成员变量
                        fields.add(new FieldInfo(pm.methodFieldName,
                            "Ljava/lang/reflect/Method;",
                             ACC_PRIVATE | ACC_STATIC));
                        // generate code for proxy method and add it
                        methods.add(pm.generateMethod());
                    }
                }
            // static静态块构造
            methods.add(generateStaticInitializer());
            cp.getClass(dotToSlash(className));
            cp.getClass(superclassName);
            for (int i = 0; i < interfaces.length; i++) {
                cp.getClass(dotToSlash(interfaces[i].getName()));
            }
            cp.setReadOnly();
            ByteArrayOutputStream bout = new ByteArrayOutputStream();
            DataOutputStream dout = new DataOutputStream(bout);
            // !!!核心点来了!这里就开始构建class文件了,以下都是class的结构,只写一部分
            try {   
                // u4 magic,class文件的魔数,确认是否为一个能被JVM接受的class
                dout.writeInt(0xCAFEBABE);
                // u2 minor_version,0
                dout.writeShort(CLASSFILE_MINOR_VERSION);
                // u2 major_version,主版本号,Java8对应的是52;
                dout.writeShort(CLASSFILE_MAJOR_VERSION);
                // 常量池
                cp.write(dout);
                // 其他结构,可参考class文件结构
                dout.writeShort(ACC_PUBLIC | ACC_FINAL | ACC_SUPER);
                dout.writeShort(cp.getClass(dotToSlash(className)));
                dout.writeShort(cp.getClass(superclassName));
                dout.writeShort(interfaces.length);
                for (int i = 0; i < interfaces.length; i++) {
                    dout.writeShort(cp.getClass(
                        dotToSlash(interfaces[i].getName())));
                }
                dout.writeShort(fields.size());
                for (FieldInfo f : fields) {
                    f.write(dout);
                }
                dout.writeShort(methods.size());           
                for (MethodInfo m : methods) {
                    m.write(dout);
                }
                dout.writeShort(0); 
            } catch (IOException e) {
                throw new InternalError("unexpected I/O Exception", e);
            }
            // 将class文件字节数组返回
            return bout.toByteArray();
        }
    

    构建$Proxy对象

    newProxyInstance()上半部分经过上面层层代码调用,获取了$Proxy0.class,接下来看下部分代码:

    newInstance

    cl就是上面获取的Proxy0.class,h就是上面传入的userHandler,被当做构造参数来创建$Proxy0对象。然后获取这个动态代理对象,调用sayHello()方法,相当于调用了UserHandler的invoke(),这里就是UserHandler的作用

    $Proxy.class文件

    我们开启了将代理class写到本地目录的功能,在项目下的com/sum/proxy目录下找到了$Proxy0的class文件。

    看一下反编译的class

    package com.sun.proxy;
    
    import com.test.proxy.UserInterface;
    import java.lang.reflect.InvocationHandler;
    import java.lang.reflect.Method;
    import java.lang.reflect.Proxy;
    import java.lang.reflect.UndeclaredThrowableException;
    
    public final class $Proxy0 extends Proxy implements UserInterface {
        private static Method m1;
        private static Method m3;
        private static Method m2;
        private static Method m0;
    
        public $Proxy0(InvocationHandler var1) throws  {
            super(var1);
        }
    
        public final boolean equals(Object var1) throws  {
            try {
                return (Boolean)super.h.invoke(this, m1, new Object[]{var1});
            } catch (RuntimeException | Error var3) {
                throw var3;
            } catch (Throwable var4) {
                throw new UndeclaredThrowableException(var4);
            }
        }
    
        public final void sayHello() throws  {
            try {
                super.h.invoke(this, m3, (Object[])null);
            } catch (RuntimeException | Error var2) {
                throw var2;
            } catch (Throwable var3) {
                throw new UndeclaredThrowableException(var3);
            }
        }
    
        public final String toString() throws  {
            try {
                return (String)super.h.invoke(this, m2, (Object[])null);
            } catch (RuntimeException | Error var2) {
                throw var2;
            } catch (Throwable var3) {
                throw new UndeclaredThrowableException(var3);
            }
        }
    
        public final int hashCode() throws  {
            try {
                return (Integer)super.h.invoke(this, m0, (Object[])null);
            } catch (RuntimeException | Error var2) {
                throw var2;
            } catch (Throwable var3) {
                throw new UndeclaredThrowableException(var3);
            }
        }
    
        static {
            try {
                m1 = Class.forName("java.lang.Object").getMethod("equals", Class.forName("java.lang.Object"));
                m3 = Class.forName("com.test.proxy.UserInterface").getMethod("sayHello");
                m2 = Class.forName("java.lang.Object").getMethod("toString");
                m0 = Class.forName("java.lang.Object").getMethod("hashCode");
            } catch (NoSuchMethodException var2) {
                throw new NoSuchMethodError(var2.getMessage());
            } catch (ClassNotFoundException var3) {
                throw new NoClassDefFoundError(var3.getMessage());
            }
        }
    }
    

    结语

    上面就是动态代理源码的调试过程,与之前的猜想的代理类的生成过程比较,动态代理是直接生成class文件,省去了java文件和编译这一块。

    刚开始看可能比较绕,跟着注释及跳转指引,耐心多看两遍就明白了。动态代理涉及的知识点比较多,我自己看的时候,在WeakCache这一块纠结了一阵,其实把它当成一个两层的map对待即可,只不过里面所有的KV都被弱引用包装。****



    写的都是日常工作中的亲身实践,处于自己的角度从0写到1,保证能够真正让大家看懂。

    文章会在公众号 [入门到放弃之路] 首发,期待你的关注。

    公众号

  • 相关阅读:
    Linux中的文件压缩,打包和备份命令
    Codeforces Round #219 (Div. 2) E. Watching Fireworks is Fun
    [一位菜鸟的COCOS-2D编程之路]COCOS2D中得动作,特效和动画
    软件工程 之 需求分析
    IOS开发之UINavigationController详解
    C++——友元函数和友元类
    拷贝构造函数
    CMake高级用法
    ros-slam的链接
    imu滤波
  • 原文地址:https://www.cnblogs.com/seven0007/p/proxy0.html
Copyright © 2020-2023  润新知