• python之线程相关操作(补充)


    1 线程的其他方法

    复制代码
    import threading
    import time
    from threading import Thread, current_thread
    
    def f1(n):
        time.sleep(1)
        print('子线程名称', current_thread().getName())
        print('子线程id', current_thread().ident)
        print('%s号线程任务' % n)
    
    if __name__ == '__main__':
        t1 = Thread(target=f1, args=(1,))
        t1.start()
        t2 = Thread(target=f1, args=(1,))
        t2.start()
        print('主线程名称', current_thread().getName())
        print('主线程id', current_thread().ident)
        print(current_thread())  # 当前线程对象
        print(threading.enumerate()) # 当前正在运行的线程对象的一个列表
        print(threading.active_count()) # 当前正在运行的线程数量
    复制代码

    2 线程队列 

    首先导入模块 import queue

    先进先出队列:queue.Queue(3)

    先进后出后进先出队列:queue.LifoQueue(3)  

    优先级队列:queue.priorityQueue(3)

    其中都是相同的方法

    复制代码
    import queue
    
    # # 先进先出队列
    # q = queue.Queue(3)
    # q.put(1)
    # q.put(2)
    # print('当前长度', q.qsize())
    # print('是否满了', q.full())
    # q.put(3)
    # print('是否满了', q.full())
    # try:
    #     q.put_nowait(5)
    # except Exception:
    #     print('满了')
    # print(q.get())
    # print(q.get())
    # print('是否空了', q.empty())
    # print(q.get())
    # print('是否空了', q.empty())
    # try:
    #     print(q.get_nowait())
    # except Exception:
    #     print('空了')
    
    
    # # 先进后出队列, 类似于栈
    # q = queue.LifoQueue(3)
    # q.put(1)
    # q.put(2)
    # q.put(3)
    #
    # print(q.get())
    # print(q.get())
    # print(q.get())
    # '''
    # 3
    # 2
    # 1
    # '''
    
    
    # 优先级队列
    q = queue.PriorityQueue(7)
    q.put((6, 'today')) # 存放一个元组, 第一个元素是优先级, 越小优先级越高
    q.put((-3, 'yesterday'))
    q.put((5, 'tomorrow'))
    q.put((12, 12))
    q.put((5, 'July'))
    q.put((7,23))
    q.put((7,123))
    
    print(q.get())
    print(q.get())
    print(q.get())
    print(q.get())
    print(q.get())
    print(q.get())
    print(q.get())
    '''
    (-3, 'yesterday')
    (5, 'July')
    (5, 'tomorrow')
    (6, 'today')
    (7, 23)
    (7, 123)
    (12, 12)
    '''
    复制代码

    3 线程池

    首先导入

    From concurrent_futures import ThreadPoolExecutor,ProcessPoolExecutor

    复制代码
    import time
    from threading import current_thread
    from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
    
    def f1(n,s):
        time.sleep(1)
        # print('%s号子线程'%current_thread().ident)
        # print(n,s)
        return
    
    if __name__ == '__main__':
        tp = ThreadPoolExecutor(4)
        # tp = ProcessPoolExecutor(4)
        # tp.map(f1,range(10))  #异步提交任务,参数同样是任务名称,可迭代对象
        res_list = []
        for i in range(10):
            res = tp.submit(f1,i,'baobao')  #submit是给线程池异步提交任务,
            print(res)
            # res.result()
            res_list.append(res)
    
        # for r in res_list:
        #     print(r.result())
    
        tp.shutdown()  #主线程等待所有提交给线程池的任务,全部执行完毕 close + join
        for r in res_list:
            print(r.result())  # 和get方法一样,如果没有结果,会等待,阻塞程序
        print('主线程结束')
    复制代码

    线程池回调函数:

    复制代码
    from  concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
    
    def f1(n, n1):
        return n + n1
    def f2(n):
        print(n) # <Future at 0x25bc198 state=finished returned int>
        print('这里是回调函数:', n.result()) # 这里是回调函数: 23
    
    if __name__ == '__main__':
        tp = ThreadPoolExecutor(4)
        res = tp.submit(f1, 11,12).add_done_callback(f2)
  • 相关阅读:
    深度学习三巨头Hinton,Bengio,LeCunn共摘本年度ACM图灵奖(ACM A.M. Turing Award)
    【我为之而活的三种激情】by 伯特兰·罗素
    遥感高光谱分类文献阅读:Going Deeper with Contextual CNN for Hyperspectral Image Classification
    遥感高光谱分类文献阅读:Exploring Hierarchical Convolutional Features for Hyperspectral Image Classification
    大乘百法明门论笔记
    太宰治【人间失格】
    论文笔记:Accurate Causal Inference on Discrete Data
    因果推断(Causal Inference)概要
    阿毗达摩基本概念
    我们必须知道,我们终将知道。
  • 原文地址:https://www.cnblogs.com/selina1997/p/10268601.html
Copyright © 2020-2023  润新知