上一篇文章我们介绍了通过神经网络来处理一个非线性回归的问题,这次我们将采用神经网络来处理一个多元分类的问题。
这次我们解决这样一个问题:输入一个人的身高和体重的数据,程序判断出这个人的身材状况,一共三个类别:偏瘦、正常、偏胖。
处理流程如下:
1、收集数据
2、构建神经网络
3、训练网络
4、保存和消费模型
详细步骤如下:
1、收集数据
对于一个复杂的业务数据,在实际应用时应该是通过收集取得数据,本文的重点不在数据收集,所以我们将制造一批标准数据来进行学习。
关于人体的胖瘦问题,有一个BMI算法,即:BMI=weight / (height * height),当BMI小于18时,认为偏瘦,当BMI大于28时,认为偏胖,18到28之间,认为正常。
首先随机生成身高和体重的数据,然后计算BMI值,并对结果进行标记,其中,偏瘦标记为0,正常标记为1,偏胖标记为2 。代码如下:
/// <summary> /// 加载训练数据 /// </summary> /// <param name="total_size"></param> private (NDArray, NDArray) PrepareData(int total_size) { float[,] arrx = new float[total_size, num_features]; int[] arry = new int[total_size]; for (int i = 0; i < total_size; i++) { float weight = (float)random.Next(30, 100) / 100; float height = (float)random.Next(140, 190) / 100; float bmi = (weight * 100) / (height * height); arrx[i, 0] = weight; arrx[i, 1] = height; switch (bmi) { case var x when x < 18.0f: arry[i] = 0; break; case var x when x >= 18.0f && x <= 28.0f: arry[i] = 1; break; case var x when x > 28.0f: arry[i] = 2; break; } }
2、构建神经网络
相对于简单的非线性模型,本次的网络结构会稍微复杂一些:
// 网络参数
int num_features = 2; // data features
int num_classes = 3; // total output
/// <summary> /// 构建网络模型 /// </summary> private Model BuildModel() { // 网络参数 int n_hidden_1 = 64; // 1st layer number of neurons. int n_hidden_2 = 64; // 2nd layer number of neurons. var model = keras.Sequential(new List<ILayer> { keras.layers.InputLayer(num_features), keras.layers.Dense(n_hidden_1, activation:keras.activations.Relu), keras.layers.Dense(n_hidden_2, activation:keras.activations.Relu), keras.layers.Dense(num_classes, activation:keras.activations.Softmax) }); return model; }
首先,本次包含两层神经网络,激活函数均采用RELU,输出层激活函数采用Softmax函数。
和上一篇文章中的网络结构相比看上去复杂很多,但其本质实际上差别不大,只是多了一个Softmax函数。
请注意观察3个Output节点,如果只是看其中一个节点的话,它实际上就是一个普通的非线性模型。
由于1、2、3三个节点的数据之和不一定等于1,Softmax函数的目的就是要使得最终输出的三个数字之和为1,这样数字本身就可以表示概率了。其计算方法也非常简单:
最后我们看一下这个网络的摘要信息:
第一层网络的训练参数数量:(2+1)*64=192
第二层网络的训练参数数量:(64+1)*64=4160
输出层网络的训练参数数量:(64+1)*3=195
3、训练网络
(NDArray train_x, NDArray train_y) = PrepareData(1000); model.compile(optimizer: keras.optimizers.Adam(0.001f), loss: keras.losses.SparseCategoricalCrossentropy(), metrics: new[] { "accuracy" }); model.fit(train_x, train_y, batch_size: 128, epochs: 300);
这里注意一点:损失函数采用稀疏分类交叉熵(SparseCategoricalCrossentropy)方法,对于分类任务,大部分时候都是采用分类交叉熵方法作为损失函数。
下面为二值交叉熵的实现公式:
可以不用看公式,简单理解交叉熵的含义:就是如果标记值为1时预测值接近1 或 标记值为0时预测值接近0 则损失函数的值就会比较小。
比如标记值为[1,0,0],预测值为[0.99,0.01,0],则损失比较小,反之,如果预测值为[0.1,0.1,0.8],则损失比较大。
下面时一个二值交叉熵的实现方法:
private Tensor BinaryCrossentropy(Tensor x, Tensor y) { var shape = tf.reduce_prod(tf.shape(x)); var count = tf.cast(shape, TF_DataType.TF_FLOAT); x = tf.clip_by_value(x, 1e-6f, 1.0f - 1e-6f); var z = y * tf.log(x) + (1 - y) * tf.log(1 - x); var result = -1.0f / count * tf.reduce_sum(z); return result; }
稀疏分类交叉熵和二值交叉熵的区别在于:二值交叉熵需要对标记结果进行独热编码(one-hot),而稀疏分类交叉熵则不需要。
前面提到,我们对分类结果进行标记,其中,偏瘦标记为0,正常标记为1,偏胖标记为2;而采用二值交叉熵进行计算时,偏瘦标记为[1,0,0],正常标记为[0,1,0],偏胖标记为[0,0,1] 。
4、保存和消费模型
训练完成后,我们通过消费这个模型来检查模型的准确性。
/// <summary> /// 消费模型 /// </summary> private void test(Model model) { int test_size = 20; for (int i = 0; i < test_size; i++) { float weight = (float)random.Next(40, 90) / 100; float height = (float)random.Next(145, 185) / 100; float bmi = (weight * 100) / (height * height); var test_x = np.array(new float[1, 2] { { weight, height } }); var pred_y = model.Apply(test_x); Console.WriteLine($"{i}:weight={(float)weight} \theight={height} \tBMI={bmi:0.0} \tPred:{pred_y[0].numpy()}"); } }
下面为测试结果:
随便看两条数据:当BMI为30.5时,预测结果为[0,0.0016,0.9983];当BMI为12.5时,预测结果为:[1,0,0],可见结果还是准确的。
全部代码如下:
/// <summary> /// 通过神经网络来实现多元分类 /// </summary> public class NN_MultipleClassification_BMI { private readonly Random random = new Random(1); // 网络参数 int num_features = 2; // data features int num_classes = 3; // total output . public void Run() { var model = BuildModel(); model.summary(); Console.WriteLine("Press any key to continue..."); Console.ReadKey(); (NDArray train_x, NDArray train_y) = PrepareData(1000); model.compile(optimizer: keras.optimizers.Adam(0.001f), loss: keras.losses.SparseCategoricalCrossentropy(), metrics: new[] { "accuracy" }); model.fit(train_x, train_y, batch_size: 128, epochs: 300); test(model); } /// <summary> /// 构建网络模型 /// </summary> private Model BuildModel() { // 网络参数 int n_hidden_1 = 64; // 1st layer number of neurons. int n_hidden_2 = 64; // 2nd layer number of neurons. var model = keras.Sequential(new List<ILayer> { keras.layers.InputLayer(num_features), keras.layers.Dense(n_hidden_1, activation:keras.activations.Relu), keras.layers.Dense(n_hidden_2, activation:keras.activations.Relu), keras.layers.Dense(num_classes, activation:keras.activations.Softmax) }); return model; } /// <summary> /// 加载训练数据 /// </summary> /// <param name="total_size"></param> private (NDArray, NDArray) PrepareData(int total_size) { float[,] arrx = new float[total_size, num_features]; int[] arry = new int[total_size]; for (int i = 0; i < total_size; i++) { float weight = (float)random.Next(30, 100) / 100; float height = (float)random.Next(140, 190) / 100; float bmi = (weight * 100) / (height * height); arrx[i, 0] = weight; arrx[i, 1] = height; switch (bmi) { case var x when x < 18.0f: arry[i] = 0; break; case var x when x >= 18.0f && x <= 28.0f: arry[i] = 1; break; case var x when x > 28.0f: arry[i] = 2; break; } } return (np.array(arrx), np.array(arry)); } /// <summary> /// 消费模型 /// </summary> private void test(Model model) { int test_size = 20; for (int i = 0; i < test_size; i++) { float weight = (float)random.Next(40, 90) / 100; float height = (float)random.Next(145, 185) / 100; float bmi = (weight * 100) / (height * height); var test_x = np.array(new float[1, 2] { { weight, height } }); var pred_y = model.Apply(test_x); Console.WriteLine($"{i}:weight={(float)weight} \theight={height} \tBMI={bmi:0.0} \tPred:{pred_y[0].numpy()}"); } } }
【相关资源】
源码:Git: https://gitee.com/seabluescn/tf_not.git
项目名称:NN_MultipleClassification_BMI