• 树套树


    树套树

    一种思想,就是一棵树的节点是另一颗树。

    在外面的叫外层树,在里面的叫内层树。

    外层树一般是, 树状数组线段树

    内层树一般是 平衡树STL , 线段树

    线段树套STL

    /*
     * @Author: zhl
     * @Date: 2020-11-16 12:50:32
     */
    #include<bits/stdc++.h>
    #define lo (o<<1)
    #define ro (o<<1|1)
    #define mid (l+r>>1)
    using namespace std;
    
    const int N = 5e4 + 10, inf = 1e9;
    
    multiset<int>s[N << 2];
    int A[N];
    void build(int o, int l, int r) {
    	s[o].insert(inf); s[o].insert(-inf);
    	for (int i = l; i <= r; i++) s[o].insert(A[i]);
    	if (l == r)return;
    	build(lo, l, mid);
    	build(ro, mid + 1, r);
    }
    void updt(int o, int l, int r, int pos, int v) {
    	s[o].erase(s[o].lower_bound(A[pos]));
    	s[o].insert(v);
    	if (l == r)return;
    	if (pos <= mid) updt(lo, l, mid, pos, v);
    	else updt(ro, mid + 1, r, pos, v);
    }
    
    int query(int o, int l, int r, int L, int R, int v) {
    	if (L <= l and r <= R) return *prev(s[o].lower_bound(v));
    	int ans = -inf;
    	if (L <= mid)ans = max(ans, query(lo, l, mid, L, R, v));
    	if (R > mid) ans = max(ans, query(ro, mid + 1, r, L, R, v));
    	return ans;
    }
    int n, m;
    int main() {
    	scanf("%d%d", &n, &m);
    	for (int i = 1; i <= n; i++)scanf("%d", A + i);
    	build(1, 1, n);
    	while (m--) {
    		int op, a, b, x; scanf("%d", &op);
    		if (op == 1) {
    			scanf("%d%d", &a, &b);
    			updt(1, 1, n, a, b);
    			A[a] = b;
    		}
    		else {
    			scanf("%d%d%d", &a, &b, &x);
    			printf("%d
    ", query(1, 1, n, a, b, x));
    		}
    	}
    }
    

    线段树套平衡树

    【树套树模板】二逼平衡树

    很多棵树的时候可以开一个 root 数组就可以,这样可以不需要传引用,因为在splay的时候会更新 root数组

    rotate 不可以任意顺序,会有影响

    /*
     * @Author: zhl
     * @Date: 2020-11-16 13:51:18
     */
    
    #include<bits/stdc++.h>
    #define mid (l+r>>1)
    #define lo (o<<1)
    #define ro (o<<1|1)
    using namespace std;
    
    const int N = 2e6 + 10, inf = 0x7fffffff;
    
    struct node {
    	int s[2], size, p, v;
    	void init(int _p, int _v) {
    		p = _p; v = _v; size = 1;
    	}
    }tr[N];
    
    int w[N], n, m, root[N], idx;
    
    void push_up(int u) {
    	tr[u].size = tr[tr[u].s[0]].size + tr[tr[u].s[1]].size + 1;
    }
    void rotate(int x) {
    	int y = tr[x].p, z = tr[y].p;
    	int k = tr[y].s[1] == x;
    	tr[z].s[tr[z].s[1] == y] = x; tr[x].p = z;
    	tr[y].s[k] = tr[x].s[k ^ 1]; tr[tr[x].s[k ^ 1]].p = y; //草这两行顺序不能换
    	tr[x].s[k ^ 1] = y; tr[y].p = x;
    	push_up(y), push_up(x);
    }
    
    void splay(int x, int k,int rt) {
    	
    	while (tr[x].p != k) {
    		int y = tr[x].p, z = tr[y].p;
    		if (z != k) {
    			if ((tr[z].s[0] == y) ^ (tr[y].s[0] == x)) rotate(x);
    			else rotate(y);
    		}
    		rotate(x);
    	}
    	if (!k)root[rt] = x;
    }
    
    void insert(int v, int rt) {
    	int u = root[rt], p = 0;
    	while (u) p = u, u = tr[u].s[v > tr[u].v];
    	u = ++idx;
    	if (p)tr[p].s[v > tr[p].v] = u;
    	tr[u].init(p, v);
    	splay(u, 0, rt);
    }
    
    int get_rank(int v, int rt) {
    	int u = root[rt], res = 0;
    	while (u) {
    		if (v > tr[u].v) res += tr[tr[u].s[0]].size + 1, u = tr[u].s[1];
    		else u = tr[u].s[0];
    	}
    	return res;
    }
    void build(int o, int l, int r) {
    	insert(-inf, o); insert(inf, o);
    	for (int i = l; i <= r; i++) {
    		insert(w[i], o);
    	}
    	if (l == r)return;
    	build(lo, l, mid);
    	build(ro, mid + 1, r);
    }
    
    int query_rank(int o, int l, int r, int L, int R, int x) {
    	if (L <= l and r <= R)return get_rank(x, o) - 1;
    	int ans = 0;
    	if (L <= mid)ans += query_rank(lo, l, mid, L, R, x);
    	if (R > mid) ans += query_rank(ro, mid + 1, r, L, R, x);
    	return ans;
    }
    void updt(int o, int l, int r, int pos, int v){
    	int u = root[o];
    	while (u) {
    		if (tr[u].v == w[pos])break;
    		if (w[pos] > tr[u].v)u = tr[u].s[1];
    		if (w[pos] < tr[u].v) u = tr[u].s[0];
    	}
    	splay(u, 0, o);
    	int ls = tr[u].s[0], rs = tr[u].s[1];
    	while (tr[ls].s[1]) ls = tr[ls].s[1];
    	while (tr[rs].s[0]) rs = tr[rs].s[0];
    	splay(ls, 0, o); splay(rs, ls, o);
    	tr[rs].s[0] = 0;
    	push_up(rs); push_up(ls);
    	insert(v, o);
    	if (l == r)return; //不要忘记结束条件
    	if (pos <= mid) {
    		updt(lo, l, mid, pos, v);
    	}
    	else {
    		updt(ro, mid + 1, r, pos, v);
    	}
    }
    int get_pre(int x,int rt) {
    	int u = root[rt], res = -inf;
    	while (u) {
    		if (tr[u].v >= x) u = tr[u].s[0];
    		else res = tr[u].v, u = tr[u].s[1];
    	}
    	return res;
    }
    int get_suc(int x,int rt) {
    	int u = root[rt], res = -inf;
    	while (u) {
    		if (tr[u].v <= x) u = tr[u].s[1];
    		else res = tr[u].v, u = tr[u].s[0];
    	}
    	return res;
    }
    
    int query_pre(int o, int l, int r, int L, int R, int x) {
    	if (L <= l and r <= R)return get_pre(x, o);
    	int ans = -inf;
    	if (L <= mid)ans = max(ans, query_pre(lo, l, mid, L, R, x));
    	if (R > mid) ans = max(ans, query_pre(ro, mid + 1, r, L, R, x));
    	return ans;
    }
    
    int query_suc(int o, int l, int r, int L, int R, int x) {
    	if (L <= l and r <= R)return get_suc(x, o);
    	int ans = inf;
    	if (L <= mid)ans = min(ans, query_suc(lo, l, mid, L, R, x));
    	if (R > mid) ans = min(ans, query_suc(ro, mid + 1, r, L, R, x));
    	return ans;
    }
    int main() {
    	scanf("%d%d", &n, &m);
    	for (int i = 1; i <= n; i++)scanf("%d", w + i);
    	build(1, 1, n);
    	while (m--) {
    		int op, a, b, k, pos;
    		scanf("%d", &op);
    		if (op == 1) {
    			scanf("%d%d%d", &a, &b, &k);
    			printf("%d
    ", query_rank(1, 1, n, a, b, k) + 1);
    		}
    		else if (op == 2) {
    			scanf("%d%d%d", &a, &b, &k);
    			int l = 0, r = 1e8;
    			while (l < r) {
    				int m = l + r + 1 >> 1;
    				if (query_rank(1, 1, n, a, b, m) + 1 <= k) {
    					l = m;
    				}
    				else {
    					r = m - 1;
    				}
    			}
    			printf("%d
    ", r);
    		}
    		else if (op == 3) {
    			scanf("%d%d", &pos, &k);
    			updt(1, 1, n, pos, k);
    			w[pos] = k;
    		}
    		else if (op == 4) {
    			scanf("%d%d%d", &a, &b, &k);
    			printf("%d
    ", query_pre(1, 1, n, a, b, k));
    		}
    		else if (op == 5) {
    			scanf("%d%d%d", &a, &b, &k);
    			printf("%d
    ", query_suc(1, 1, n, a, b, k));
    		}
    	}
    
    }
    
  • 相关阅读:
    php7 & lua 压测对比
    .NET CORE——Console中使用依赖注入
    EntityFramework Core 自动绑定模型映射
    月末总结与推书
    Dapper连接与事务的简单封装
    EntityFramework Core 学习扫盲
    从输入url到页面返回到底发生了什么
    [译]C#和.NET中的字符串
    利用C#迭代器的一个杨辉三角示例
    用 dotTrace 进行性能分析时,各种不同性能分析选项的含义和用途
  • 原文地址:https://www.cnblogs.com/sduwh/p/13985611.html
Copyright © 2020-2023  润新知