• 轻量级CNN模型之squeezenet


    SqueezeNet

    论文地址:https://arxiv.org/abs/1602.07360

    和别的轻量级模型一样,模型的设计目标就是在保证精度的情况下尽量减少模型参数.核心是论文提出的一种叫"fire module"的卷积方式.

    设计策略

    • 主要用1x1卷积核,而不是3x3.
    • 减少3x3卷积核作用的channel.
    • 推迟下采样的时间.以获取更大尺寸的feature map.这一点是处于精度的考虑.毕竟feature map的resolution越大,信息越丰富.下采样主要通过pool来完成或者卷积的时候控制stride大小.

    Fire Module

    这个就是网络的核心组件了.

    分2部分:

    • squeeze convolution layer
    • expand layer
      其中squeeze只有1x1filter,expand layer由1x1和3x3filter组成.
      在squeeze层卷积核数记为(s_{1x1}),在expand层,记1x1卷积核数为(e_{1x1}),而3x3卷积核数为(e_{3x3}),这三个属于超参数,可调。为了尽量降低3x3的输入通道数,让(s_{1x1}<e_{1x1}+e_{3x3})
      这两层的设计分别体现了策略1(多用1x1filter)和策略2(减少3x3filter作用channel).

    首先,squeeze convolution layer通过控制1x1卷积核数量达到把输入的channel数目降低的目的.这个是降低参数的最关键的一步.
    然后,分别用1x1卷积核和3x3卷积核去做卷积.然后得到不同depth的输出,concat起来.([x,x,depth1],[x,x,depth2]-->[x,x,depth1+depth2])

    代码实现
    torch的官方实现:https://pytorch.org/docs/stable/_modules/torchvision/models/squeezenet.html

    import torch
    import torch.nn as nn
    
    class Fire(nn.Module):
    
        def __init__(self, inplanes, squeeze_planes,
                     expand1x1_planes, expand3x3_planes):
            super(Fire, self).__init__()
            self.inplanes = inplanes
            self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
            self.squeeze_activation = nn.ReLU(inplace=True)
            self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
                                       kernel_size=1)
            self.expand1x1_activation = nn.ReLU(inplace=True)
            self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
                                       kernel_size=3, padding=1)
            self.expand3x3_activation = nn.ReLU(inplace=True)
    
        def forward(self, x):
            x = self.squeeze_activation(self.squeeze(x))
            print(x.shape)
            e_1 = self.expand1x1(x)
            print(e_1.shape)
            e_3 = self.expand3x3(x)
            print(e_3.shape)
            return torch.cat([
                self.expand1x1_activation(e_1),
                self.expand3x3_activation(e_3)
            ], 1)
    

    很显然地,squeeze convolution layer把channel数量降下来了,所以参数少了很多.
    以输入tensor为[n,c,h,w]=[1,96,224,224]举例,假设fire module的squeeze layer的卷积核数量为6,expand layer中1x1卷积核数量为5,3x3卷积核数量为4.
    则fire module的参数数量为1x1x96x6 + 1x1x6x5 + 3x3x6x4=822.
    普通的3x3卷积,得到depth=9的feature map的话需要3x3x96x9=7776个参数.
    所以模型才可以做到很小.

    网络结构


    基本就是fire module的堆叠.中间穿插了一些maxpool对feature map下采样. 注意一下最后用了dropout以及全局平均池化而不是全连接来完成分类.

    最左边的就是类似vgg的堆叠式的结构.中间和右边的参考了resnet的skip-connection.

    class SqueezeNet(nn.Module):
    
        def __init__(self, version='1_0', num_classes=1000):
            super(SqueezeNet, self).__init__()
            self.num_classes = num_classes
            if version == '1_0':
                self.features = nn.Sequential(
                    nn.Conv2d(3, 96, kernel_size=7, stride=2),
                    nn.ReLU(inplace=True),
                    nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                    Fire(96, 16, 64, 64),
                    Fire(128, 16, 64, 64),
                    Fire(128, 32, 128, 128),
                    nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                    Fire(256, 32, 128, 128),
                    Fire(256, 48, 192, 192),
                    Fire(384, 48, 192, 192),
                    Fire(384, 64, 256, 256),
                    nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                    Fire(512, 64, 256, 256),
                )
            elif version == '1_1':
                self.features = nn.Sequential(
                    nn.Conv2d(3, 64, kernel_size=3, stride=2),
                    nn.ReLU(inplace=True),
                    nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                    Fire(64, 16, 64, 64),
                    Fire(128, 16, 64, 64),
                    nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                    Fire(128, 32, 128, 128),
                    Fire(256, 32, 128, 128),
                    nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                    Fire(256, 48, 192, 192),
                    Fire(384, 48, 192, 192),
                    Fire(384, 64, 256, 256),
                    Fire(512, 64, 256, 256),
                )
            else:
                # FIXME: Is this needed? SqueezeNet should only be called from the
                # FIXME: squeezenet1_x() functions
                # FIXME: This checking is not done for the other models
                raise ValueError("Unsupported SqueezeNet version {version}:"
                                 "1_0 or 1_1 expected".format(version=version))
    
            # Final convolution is initialized differently from the rest
            final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
            self.classifier = nn.Sequential(
                nn.Dropout(p=0.5),
                final_conv,
                nn.ReLU(inplace=True),
                nn.AdaptiveAvgPool2d((1, 1))
            )
    
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    if m is final_conv:
                        init.normal_(m.weight, mean=0.0, std=0.01)
                    else:
                        init.kaiming_uniform_(m.weight)
                    if m.bias is not None:
                        init.constant_(m.bias, 0)
    
        def forward(self, x):
            x = self.features(x)
            x = self.classifier(x)
            return torch.flatten(x, 1)
    

    https://pytorch.org/hub/pytorch_vision_squeezenet/
    这里有一个用torch中的模型做推理的例子,

    .....
    with torch.no_grad():
        output = model(input_batch)
    # Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
    print(output[0])
    # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
    print(torch.nn.functional.softmax(output[0], dim=0))
    

    CNN结构设计的探索

    主要从2个方面做实验探讨了不同结构对模型精度和模型大小的影响.

    • fire module怎么设计,squeeze layer和expand layer的filter数量怎么设计
    • fire module怎么串起来形成一个网络,是简单堆叠还是引入bypass

    关于第一点fire module中各种filter占比的实验结果如下图:

    这里的sr指的是squeeze layer的卷积核数量/expand layer比例.3x3filter比例指expand layer里3x3filter比例.
    具体设计参考论文:

    一点思考:
    1x1的卷积核关联了某个位置的feature所有channel上的信息.3x3的卷积核关联了多个位置的feature的所有channel的信息.按道理说3x3的越多应该模型精度越好,但实验数据显示并非如此.可能有些是噪音,3x3卷积参考太多周围的feature反而导致精度下降. 这也是深度学习现在被比较多诟病的一点,太黑盒了.只知道能work,为啥work不好解释.不同的数据集可能不同的参数表现会不一样,很难讲哪个最优,调参比较依赖经验.

    关于第二点在layer之间采用不同的连接方式,实验结果如下:

  • 相关阅读:
    正则去掉 html标签
    app内嵌 h5页面 再滑动的时候 触发击穿底下的一些touchstart事件
    设置按钮不能连续点击并触发点击事件
    使用NPOI导入导出标准Excel
    ASP.NET导出word实例
    常用SQL语句大全总结
    判断以及防止SQL注入
    javascript 正则表达式总结
    前端页面优化技巧
    自我介绍
  • 原文地址:https://www.cnblogs.com/sdu20112013/p/11771873.html
Copyright © 2020-2023  润新知