• 洛谷 P3205 [HNOI2010]合唱队


    为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形。假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<=2000),并已知任何两个人的身高都不同。假定最终排出的队形是A 个人站成一排,为了简化问题,小A想出了如下排队的方式:他让所有的人先按任意顺序站成一个初始队形,然后从左到右按以下原则依次将每个人插入最终棑排出的队形中:

    -第一个人直接插入空的当前队形中。

    -对从第二个人开始的每个人,如果他比前面那个人高(H较大),那么将他插入当前队形的最右边。如果他比前面那个人矮(H较小),那么将他插入当前队形的最左边。

    当N个人全部插入当前队形后便获得最终排出的队形。

    例如,有6个人站成一个初始队形,身高依次为1850、1900、1700、1650、1800和1750,

    那么小A会按以下步骤获得最终排出的队形:

    1850

    1850 , 1900 因为 1900 > 1850

    1700, 1850, 1900 因为 1700 < 1900

    1650 . 1700, 1850, 1900 因为 1650 < 1700

    1650 , 1700, 1850, 1900, 1800 因为 1800 > 1650

    1750, 1650, 1700,1850, 1900, 1800 因为 1750 < 1800

    因此,最终排出的队形是 1750,1650,1700,1850, 1900,1800

    小A心中有一个理想队形,他想知道多少种初始队形可以获得理想的队形

    状态可能不太好设计

    不妨用(f_{l,r,0})表示lr这段区间中l从左边插入的方案数,$f_{l,r,1}$表示lr这段区间中r从右边插入的方案数

    于是我们得到如下的转移方程

    (f_{l,r,0}+=egin{cases}f_{l+1,r,0}&; (a_l<a_{l+1})\ f_{l+1,r,1}&; (a_l<a_r)end{cases})

    从左边插入一定比上一个数小,而上一个数的来源只可能是l+1或者r,然后就可以更新答案

    (f_{l,r,1}+=egin{cases}f_{l,r-1,0}&; (a_r>a_l) \ f_{l,r-1,1}&; (a_r>a_{r-1})end{cases})

    从右边插入一定比上一个数大,而上一个数的来源只可能是r-1或者l,然后就可以更新答案

    (f_{1,n,0}+f_{1,n,1})就是这道题答案了QAQ

    Code

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    const int N = 1000;
    const int p = 19650827;
    using namespace std;
    int n,a[N + 5],f[N + 5][N + 5][3];
    int main()
    {
        scanf("%d",&n);
        for (int i = 1;i <= n;i++)
            scanf("%d",&a[i]);
        for (int i = 1;i <= n;i++)
            f[i][i][0] = 1;
        for (int i = 2;i <= n;i++)
            for (int j = 1;j + i - 1 <= n;j++)
            {
                if (a[j + i - 1] > a[j])
                    f[j][j + i - 1][0] += f[j + 1][j + i - 1][1];
                if (a[j] < a[j + 1])
                    f[j][j + i - 1][0] += f[j + 1][j + i - 1][0];
                if (a[j + i - 1] > a[j + i - 2])
                    f[j][j + i - 1][1] += f[j][j + i - 2][1];
                if (a[j + i - 1] > a[j])
                    f[j][j + i - 1][1] += f[j][j + i - 2][0];
                f[j][j + i - 1][0] %= p;
                f[j][j + i - 1][1] %= p;
            }
        cout<<(f[1][n][0] + f[1][n][1]) % p<<endl;
        return 0;
    }
    
  • 相关阅读:
    JSON
    FBV & CBV
    django Tips
    Django2.2
    cookie & session
    ajax请求
    视图函数
    模板语法
    模板继承、组件
    python之路-----多线程与多进程
  • 原文地址:https://www.cnblogs.com/sdlang/p/13068274.html
Copyright © 2020-2023  润新知