• poj1094 Sorting It All Out


    Description

    An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
    Input

    Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character “<” and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
    Output

    For each problem instance, output consists of one line. This line should be one of the following three:

    Sorted sequence determined after xxx relations: yyy…y.
    Sorted sequence cannot be determined.
    Inconsistency found after xxx relations.

    where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy…y is the sorted, ascending sequence.
    Sample Input

    4 6
    A<B
    A<C
    B<C
    C<D
    B<D
    A<B
    3 2
    A<B
    B<A
    26 1
    A<Z
    0 0

    Sample Output

    Sorted sequence determined after 4 relations: ABCD.
    Inconsistency found after 2 relations.
    Sorted sequence cannot be determined.
    Source

    East Central North America 2001

    题意大概是给n个变量m个不等式,不等式之间有传递性,判断这些不等式是否矛盾,若不矛盾,判断能否求出每一对变量的关系,若能求出,判断最少利用前几个不等式。

    做法:传递闭包+拓补排序。
    利用floyd实现传递闭包,dp[i][j]=1表示i

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<queue>
    
    using namespace std;
    const int MAXN = 30;
    
    int n,m,dp[MAXN][MAXN],d[MAXN];
    bool flag;
    char c[4];
    
    inline int floyd() {
        memset(d,0,sizeof(d));
        for(register int k=1; k<=n; k++)
            for(register int x=1; x<=n; x++)
                for(register int j=1; j<=n; j++) {
                    if(dp[x][k] && dp[k][j])
                        dp[x][j]=1;
                }
        for(register int i=1; i<=n; i++)
            for(register int j=i+1; j<=n; j++) {
                if(dp[i][i]==1) return 1;
                if(dp[i][j]==1) d[j]++;
                if(dp[j][i]==1) d[i]++;
                if(dp[i][j]==1 && dp[j][i]==1)
                    return 1;
            }
        for(register int i=1; i<=n; i++)
            for(register int j=i+1; j<=n; j++)
                if(dp[i][j]==0 && dp[j][i]==0)
                    return 2;
        return 3;
    }
    
    int main() {
        while(~scanf("%d%d",&n,&m)) {
            if(n==0 && m==0) break;
            flag=false;
            memset(dp,0,sizeof(dp));
            for(register int i=1; i<=m; i++) {
                scanf("%s",c+1);
                if(flag) continue;
                dp[c[1]-'A'+1][c[3]-'A'+1]=1;
                int u=floyd();
                if(u==1) {
                    printf("Inconsistency found after %d relations.",i);
                    flag=true;
                    printf("
    ");
                } else if(u==3) {
                    printf("Sorted sequence determined after %d relations: ",i);
                    queue<int> q;
                    for(register int i=1; i<=n; i++)
                        if(d[i]==0) {
                            q.push(i);
                            break;
                        }
                    while(q.size()) {
                        int x=q.front();
                        q.pop();
                        printf("%c",x+'A'-1);
                        for(register int i=1; i<=n; i++)
                            if(dp[x][i]) {
                                d[i]--;
                                if(d[i]==0)
                                    q.push(i);
                            }
                    }
                    printf(".
    ");
                    flag=true;
                }
    
            }
            if(!flag)
                printf("Sorted sequence cannot be determined.
    ");
    //      for(register int i=1; i<=n; i++) {
    //          for(register int j=1; j<=n; j++) {
    //              cout<<dp[i][j]<<" ";
    //          }
    //          cout<<endl;
    //      }
        }
    }
  • 相关阅读:
    关于全景漫游
    webgl圈中物体
    css3の极限
    reactjs弹幕视频播放
    数值积分I
    显出你的h5逼格
    奇葩のbeforeunload
    面试问题搜集及解析
    TCP拥塞控制(滑动窗口机制)
    如何使CPU占用率为50%
  • 原文地址:https://www.cnblogs.com/sdfzsyq/p/9677129.html
Copyright © 2020-2023  润新知