• Sliding Window 单调队列求区间内的最值


    Description

    An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example:
    The array is [1 3 -1 -3 5 3 6 7], and k is 3.
    Window positionMinimum valueMaximum value
    [1  3  -1] -3  5  3  6  7  -1 3
     1 [3  -1  -3] 5  3  6  7  -3 3
     1  3 [-1  -3  5] 3  6  7  -3 5
     1  3  -1 [-3  5  3] 6  7  -3 5
     1  3  -1  -3 [5  3  6] 7  3 6
     1  3  -1  -3  5 [3  6  7] 3 7

    Your task is to determine the maximum and minimum values in the sliding window at each position.

    Input

    The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line.

    Output

    There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values.

    Sample Input

    8 3
    1 3 -1 -3 5 3 6 7
    

    Sample Output

    -1 -3 -3 -3 3 3
    3 3 5 5 6 7
    

    Source

    ***************************************************************************************************************************

    单调队列,求区间内的最值(注意是多个定长区间)

    ***************************************************************************************************************************

     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<cstdio>
     6 #include<algorithm>
     7 using namespace std;
     8 int a[1000001];
     9 int que[100000001];
    10 int n,k;
    11 void Min()//单调递增求最小值
    12 {
    13     int head=1,tail=0;
    14     int it;
    15     for(it=0;it<k-1;it++)
    16     {
    17         while(head<=tail&&a[que[tail]]>=a[it])tail--;
    18         tail++;
    19         que[tail]=it;
    20     }
    21     for(it=k-1;it<n;it++)
    22     {
    23         while(head<=tail&&a[que[tail]]>=a[it])tail--;
    24         tail++;
    25         que[tail]=it;
    26         while(que[head]<it-k+1)head++;
    27         printf("%d",a[que[head]]);
    28         printf("%c",((it==n-1)?'
    ':' '));
    29 
    30     }
    31 }
    32 void Max()//单调递减,求最大值
    33 {
    34     int head=1,tail=0;
    35     int it;
    36     for(it=0;it<k-1;it++)
    37     {
    38         while(head<=tail&&a[que[tail]]<=a[it])tail--;
    39         tail++;
    40         que[tail]=it;
    41     }
    42     for(it=k-1;it<n;it++)
    43     {
    44         while(head<=tail&&a[que[tail]]<=a[it])tail--;
    45         tail++;
    46         que[tail]=it;
    47         while(que[head]<it-k+1)head++;
    48         printf("%d",a[que[head]]);
    49         printf("%c",((it==n-1)?'
    ':' '));
    50 
    51     }
    52 }
    53 int main()
    54 {
    55     int i,j;
    56     while(scanf("%d%d",&n,&k)!=EOF)
    57     {
    58         for(i=0;i<n;i++)
    59         scanf("%d",&a[i]);
    60         Min();
    61         Max();
    62     }
    63     return 0;
    64 
    65 }
    View Code
  • 相关阅读:
    DP(第三版(较简单))
    【テンプレート】洛谷
    【説明する】并查集
    第一篇博文
    cogs 2398 切糕 最小割
    cogs 1873 happiness 最大权闭合子图
    cogs 1274 最小截断 最小割唯一判定
    cogs 736 星际转移 最大流
    cogs 329 K-联赛 最大流
    cogs 2605 寒假ing
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3450728.html
Copyright © 2020-2023  润新知