Problem Description
Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere, while the rest are busy doing heroic deeds around the country.
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
- The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
- An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)
Input
The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).
The input is terminated by a block with n = m = 0 .
The input is terminated by a block with n = m = 0 .
Output
For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled.
Sample Input
5 5
1 4
1 5
2 5
3 4
4 5
0 0
Sample Output
2
***************************************************************************************************************************
找双连通分量,
判断是否为奇圈时:用染色来判断,如果无法进行交叉染色,则为奇圈,否则不是。
求补图,即能相互在一起的骑士的集合,最后留下的即为被剔除的。
***************************************************************************************************************************
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <stack> 6 #include <queue> 7 #define MAX 1005 8 using namespace std; 9 struct node 10 { 11 int to,next; 12 }; 13 struct Eage 14 { 15 int start,end; 16 }; 17 int N,M; 18 bool cnt[MAX][MAX]; 19 node edge[MAX*100]; 20 int head[MAX]; 21 int index; 22 int dfn[MAX],low[MAX]; 23 int time; 24 stack <Eage> sta; 25 int color[MAX]; 26 bool flag[MAX]; 27 queue <int> Q; 28 29 bool mark[MAX]; 30 31 void addNode(int from,int to) 32 { 33 edge[index].to = to; 34 edge[index].next = head[from]; 35 head[from] = index++; 36 edge[index].to = from; 37 edge[index].next = head[to]; 38 head[to] = index++; 39 } 40 41 void convert() 42 { 43 index = 0; 44 memset(head,-1,sizeof(head)); 45 for(int i=1;i<=N;i++) 46 { 47 for(int j=i+1;j<=N;j++) 48 { 49 if(!cnt[i][j]) 50 addNode(i,j); 51 } 52 } 53 } 54 bool toColor(int now) 55 { 56 while(!Q.empty()) 57 Q.pop(); 58 Q.push(now); 59 while(!Q.empty()) 60 { 61 int cur = Q.front(); 62 Q.pop(); 63 for(int i=head[cur];i!=-1;i=edge[i].next) 64 { 65 int to=edge[i].to; 66 if(!flag[to]) 67 continue; 68 if(!color[to]) 69 { 70 color[to]=-color[cur]; 71 Q.push(to); 72 } 73 else if(color[to] == color[cur]) 74 return true; 75 } 76 } 77 return false; 78 } 79 80 void tarjan(int cur,int fat) 81 { 82 dfn[cur]=low[cur]=++time; 83 for(int i=head[cur];i!=-1;i=edge[i].next) 84 { 85 int to=edge[i].to; 86 if(to!=fat && dfn[to]<dfn[cur]) 87 { 88 if(!dfn[to]) 89 { 90 Eage eg; 91 eg.start=cur; 92 eg.end=to; 93 sta.push(eg); 94 tarjan(to,cur); 95 low[cur]=min(low[cur],low[to]); 96 if(dfn[cur]<=low[to])//存在连通分量 出栈标记; 97 { 98 memset(flag,0,sizeof(flag)); 99 while(!sta.empty()) 100 { 101 Eage s=sta.top(); 102 sta.pop(); 103 if(s.start == eg.start && s.end == eg.end) 104 break; 105 flag[s.start]=true; 106 flag[s.end]=true; 107 } 108 memset(color,0,sizeof(color)); 109 color[cur]=1; 110 if(toColor(cur)) 111 { 112 mark[cur]=true; 113 for(int j=1;j<=N;j++) 114 if(flag[j]) 115 mark[j]=true; 116 } 117 } 118 } 119 else 120 low[cur]=min(low[cur],dfn[to]); 121 } 122 } 123 } 124 125 void solve() 126 { 127 memset(dfn,0,sizeof(dfn)); 128 time = 0; 129 for(int i=1;i<=N;i++) 130 if(!dfn[i]) 131 tarjan(i,-1); 132 } 133 134 int main() 135 { 136 while(scanf("%d%d",&N,&M)) 137 { 138 if(!N && !M) 139 break; 140 memset(cnt,0,sizeof(cnt)); 141 memset(mark,0,sizeof(mark)); 142 for(int i=1;i<=M;i++) 143 { 144 int s,e; 145 scanf("%d%d",&s,&e); 146 cnt[s][e]=cnt[e][s]=true; 147 } 148 convert(); 149 solve(); 150 int ret = 0; 151 for(int i=1;i<=N;i++) 152 if(mark[i]) 153 ret ++; 154 printf("%d ",N-ret); 155 } 156 return 0; 157 }