• Print Article


    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree. One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost
    M is a const number. Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230
     
    Author
    Xnozero
     
    Source
     
    Recommend
    zhengfeng
    ***************************************************************************************
    讲解的很清楚,有图又推导,不过看了很长时间才看懂,关键求斜率推导式
    ***************************************************************************************
     1 #include<iostream>
     2 #include<cstring>
     3 #include<string>
     4 #include<cstdio>
     5 #include<cmath>
     6 #define  L  long long
     7 using namespace std;
     8 L dp[500005];
     9 L sum[500005];
    10 int  q[500005];
    11 int n,m,i,j;
    12 void  init()
    13 {
    14     for(i=1;i<=n;i++)
    15      cin>>sum[i];
    16     for(i=2;i<=n;i++)
    17       sum[i]+=sum[i-1];
    18 
    19 }
    20 L getdp(int i,int j)//求dp
    21     {
    22         return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
    23     }
    24 L  getup(int j,int k)//分子
    25  {
    26      return   (dp[j]+sum[j]*sum[j])-(dp[k]+sum[k]*sum[k]);
    27  }
    28 L getdown(int j,int k)//分母
    29   {
    30       return  2*(sum[j]-sum[k]);
    31   }
    32 int main()
    33 {
    34    while(scanf("%d %d",&n,&m)!=EOF)
    35     {
    36         memset(dp,0,sizeof(dp));
    37         memset(sum,0,sizeof(sum));
    38         memset(q,0,sizeof(q));
    39         init();
    40       int head=0;
    41     int tail=0;
    42      q[0]=dp[0]=0;
    43      tail++;
    44      for(i=1;i<=n;i++)
    45       {
    46           while(head+1<tail&&getup(q[head+1],q[head])<=sum[i]*getdown(q[head+1],q[head]))
    47             head++;
    48             dp[i]=getdp(i,q[head]);
    49           while(head+1<tail&&getup(i,q[tail-1])*getdown(q[tail-1],q[tail-2])<=getup(q[tail-1],q[tail-2])*getdown(i,q[tail-1]))//删去一定不满足条件的点
    50             tail--;
    51           q[tail++]=i;
    52       }
    53 
    54   cout<<dp[n]<<endl;
    55 }
    56   return 0;
    57 
    58 
    59 
    60 }
    View Code
  • 相关阅读:
    选择排序与冒泡排序
    判断是否为偶数
    mysql基础之mysql双主(主主)架构
    mysql基础之mysql主从架构半同步复制
    mysql基础之mysql主从架构
    mysql基础之数据库备份和恢复实操
    mysql基础之数据库备份和恢复的基础知识
    mysql基础之日志管理(查询日志、慢查询日志、错误日志、二进制日志、中继日志、事务日志)
    mysql基础之查询缓存、存储引擎
    mysql基础之数据库变量(参数)管理
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3251238.html
Copyright © 2020-2023  润新知