• FFmpeg-Nvidia硬解码


    编译安装说明

    主要参考Ubuntu 16.04下编译ffmpeg支持CUDA下的cuvid vnenc和NPP的内容。建议编译安装前熟练阅读参考资料中的重要链接。

    ffmpeg的configure命令:

    PKG_CONFIG_PATH="$HOME/local/lib/pkgconfig" ./configure --prefix="$HOME/local" --pkg-config-flags="--static" --extra-cflags="-I$HOME/local/include" --extra-ldflags="-L$HOME/local/lib" --extra-libs=-lpthread --extra-libs=-lm --bindir="$HOME/local/bin" --enable-gpl --enable-libfdk_aac --enable-libmp3lame --enable-libx264 --enable-nonfree --enable-gpl --enable-cuda --enable-cuvid --enable-nvdec --enable-nvenc --enable-libnpp --extra-cflags=-I/usr/local/cuda/include  --extra-ldflags=-L/usr/local/cuda/lib64

    命令行测试:

    ffmpeg -vsync 0 -hwaccel cuda -hwaccel_output_format cuda -i test.mp4 -c:a copy -vf scale_npp=1280:720 -c:v h264_nvenc -b:v 5M output/re5.mp4

    可能遇到的编译错误:

    bugfix:[h264_nvenc @ 0x32c2080] Driver does not support the required nvenc API version. Required: 10.0 Found: 9.0
    https://blog.csdn.net/qq_23282479/article/details/107579032
    https://forums.developer.nvidia.com/t/ffmpeg-nvenc-issue-driver-does-not-support-the-required-nvenc-api-version-required-9-1-found-9-0/109348
    nv-codec-headers里的README记录了最低要求的驱动版本号(可以到github里面去看https://github.com/FFmpeg/nv-codec-headers
    在nv-codec-headers目录下执行git checkout sdk/9.0,切换回旧版本后,make clean之后重新编译ffmpeg即可。

    NVIDIA Encoding and Decoding Hardware

    NVIDIA GPUs ship with an on-chip hardware encoder and decoder unit often referred to as NVENC and NVDEC. Separate from the CUDA cores, NVENC/NVDEC run encoding or decoding workloads without slowing the execution of graphics or CUDA workloads running at the same time.

    NVENC and NVDEC support the many important codecs for encoding and decoding. Figure 1 lists many of the codecs, format and features supported with current NVIDIA hardware. Actual support depends on the GPU that is used. An up-to-date support matrix can be found at the Video Encode and Decode Support Matrix page.

    GPU encode and decode capabilities image

    Figure 1: GPU hardware capabilities

    Hardware accelerated transcoding with FFmpeg

    Separate from the CUDA cores, NVENC/NVDEC run encoding or decoding workloads without slowing the execution of graphics or CUDA workloads running at the same time.

    Using the FFmpeg library is common practice when transcoding video data. Hardware acceleration dramatically improves the performance of the workflow. Figure 2 shows the different elements of the transcoding process with FFmpeg.

    Figure 2: Transcoding pipeline with FFmpeg using NVIDIA hardware acceleration
    FFmpeg supports hardware accelerated decoding and encoding via the hwaccel cuda, h264_cuvid, hevc_cuvid and h264_nvenc, hevc_nvenc modules. Activating support for hardware acceleration when building from source requires some extra steps:

    • Clone the FFmpeg git repository https://git.ffmpeg.org/ffmpeg.git
    • Download and install a compatible driver from the NVIDIA web site
    • Download and install the CUDA toolkit
    • Clone the nv-codec-headers repository  and install using this repository as header-only: make install
    • Configure FFmpeg using the following command (use correct CUDA library path):


    ./configure --enable-cuda --enable-cuvid --enable-nvdec --enable-nvenc --enable-nonfree --enable-libnpp --extra-cflags=-I/usr/local/cuda/include  --extra-ldflags=-L/usr/local/cuda/lib64

    • Build with multiple processes to increase build speed and suppress excessive output: make -j -s


    Using FFmpeg to do software 1:1 transcode is simple:
    ffmpeg -i input.mp4 -c:a copy -c:v h264 -b:v 5M output.mp4
    But this is going to be slow slow since it only uses the CPU-based software encoder and decoder. Using the hardware encoder NVENC and decoder NVDEC requires adding some more parameters to tell ffmpeg which encoder and decoders to use. 
    Maximizing the transcoding speed also means making sure that the decoded image is kept in GPU memory so the encoder can efficiently access it.
    ffmpeg -hwaccel cuda -hwaccel_output_format cuda -i input.mp4 -c:v h264_nvenc -b:v 5M output.mp4

    -hwaccel cuda

    chooses appropriate hw accelerator

    -hwaccel_output_format cuda

    keeps the decoded frames in GPU memory

    -c:v h264_nvenc

    selects the NVIDIA hardware accelerated H.264 encoder


    Without the -hwaccel cuda -hwaccel_output_format cuda option, the decoded raw frames would be copied back to system memory via the PCIe bus, shown in figure 3. Later, the same image would be copied back to GPU memory via PCIe to encode on the GPU. These two additional transfers create latency due to the transfer time and will increase PCIe bandwidth occupancy.

    Memory flow without hwaccel diagram

    Figure 3: Memory flow without hwaccel
    Adding the -hwaccel cuvid option means the raw decoded frames will not be copied and the transcoding will be faster and use less system resources, as shown in figure 4.

    Memory flow with hwaccel diagram

    Figure 4: Memory flow with hwaccel
    Given PCIe bandwidth limits, copying uncompressed image data would quickly saturate the PCIe bus. Prevent unnecessary copies between system and GPU memory, using -hwaccel cuda -hwaccel_output_format cuda result in up to 2x the throughput compared to the unoptimized call not using -hwaccel cuvid.

    Processing filters

    Transcoding often involves not only changing format or bitrate of the input stream, but also resizing it. Two options exist for resizing on the GPU: using the npp_scale filter or the nvcuvid resize option. The nvcuvid resize option can be used when transcoding from one input to one output stream with different resolution (1:1 transcode). See the next line for an example.
    ffmpeg -vsync 0 –hwaccel cuvid -c:v h264_cuvid –resize 1280x720 -i input.mp4 -c:a copy -c:v h264_nvenc -b:v 5M output.mp4


    If multiple output resolutions are needed (1:N transcode), the scale_npp filter can resize decoded frames on the GPU. This way we can generate multiple output streams with multiple different resolutions but only using one resize step for all streams. See the next line for an example of 1:2 transcode.
    ffmpeg -vsync 0 -hwaccel cuda -hwaccel_output_format cuda -i input.mp4  -c:a copy –vf scale_npp=1280:720 -c:v h264_nvenc -b:v 5M output_720.mp4  -c:a copy -vf scale_npp=640:320 -c:v h264_nvenc -b:v 3M output_360.mp4


    Using -vf "scale_npp=1280:720" will set scale_npp as filter for the decoded images
    The interpolation algorithm can be defined for scale_npp as an additional argument. Cubic interpolation is used by default but other algorithms might give better results depending on scale factor and images. Using the super-sampling algorithm is recommended for best quality when downscaling. See below for an example:
    ffmpeg -vsync 0 -hwaccel cuda -hwaccel_output_format cuda -i input.mp4 -c:a copy –vf scale_npp=1280:720:interp_algo=super -c:v h264_nvenc -b:v 5M output_720.mp4

    Mixing CPU and GPU processing

    Sometimes it might be necessary to mix CPU and GPU processing. For example you may need to decode on the CPU, because the format is unsupported on the GPU decoder, or because a filter is not available on the GPU. In those cases, you can’t use the -hwaccel cuvid or -hwaccel cuda flag. Instead, you need to manage uploading the data from system to GPU memory using the hwupload_cuda filter. In the example below, an H.264 stream is decoded on the GPU and downloaded to system memory since -hwaccel cuvid is not set. The fade filter is applied in system memory and the processed image uploaded to GPU memory using the hwupload_cuda filter. Finally, the image is scaled using scale_npp and encoded on the GPU.
    ffmpeg -vsync 0 -c:v h264_cuvid -i input.264 -vf "fade,hwupload_cuda,scale_npp=1280:720" -c:v h264_nvenc output.264

    npp_scale

    The NVIDIA Performance Primitives (NPP) library provides GPU-accelerated image, video, and signal processing functions that perform up to 30x faster than CPU-only implementations. With over 5000 primitives for image and signal processing, you can easily perform tasks such as color conversion, image compression, filtering, thresholding and image manipulation.
    The NPP library optimizes the use of available computing resources so that your application achieves maximum performance across the data center, workstation and embedded platforms. Today, NPP is widely used by engineers, scientists and researchers working on images processing, signals processing and computer vision applications in autonomous vehicles, medical imaging, robotics and HPC.

     scale_npp: This is a scaling filter implemented in NVIDIA's Performance Primitives. It's primary dependency is the CUDA SDK, and it must be explicitly enabled by passing --enable-libnpp, --enable-cuda-nvcc and --enable-nonfree flags to ./configure at compile time when building FFmpeg from source. Use this filter in place of scale_cuda wherever possible.

    npp像素格式转换的命令示例:
    ffmpeg -vsync 0 -hwaccel_device 2 -hwaccel cuda -hwaccel_output_format cuda -i ~/vedio/drone1.flv -vf "scale_npp=format=yuv420p,hwdownload,format=yuv420p" ff22cuda2.yuv

    CUDA Driver

    Running a CUDA application requires the system with at least one CUDA capable GPU and a driver that is compatible with the CUDA Toolkit. See Table 3. For more information various GPU products that are CUDA capable, visit https://developer.nvidia.com/cuda-gpus.

    Each release of the CUDA Toolkit requires a minimum version of the CUDA driver. The CUDA driver is backward compatible, meaning that applications compiled against a particular version of the CUDA will continue to work on subsequent (later) driver releases.

    More information on compatibility can be found at https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-runtime-and-driver-api-version.

    Note: Starting with CUDA 11.0, the toolkit components are individually versioned, and the toolkit itself is versioned as shown in the table below.

    The minimum required driver version for CUDA enhanced compatibility is shown below. CUDA Enhanced Compatibility is described in detail in https://docs.nvidia.com/deploy/cuda-compatibility/index.html

    Table 2. CUDA Toolkit and Minimum Required Driver Version for CUDA Enhanced Compatibility

    CUDA ToolkitMinimum Required Driver Version for CUDA Enhanced Compatibility
    Linux x86_64 Driver VersionWindows x86_64 Driver Version
    CUDA 11.0 to CUDA 11.3.1 Update 1 >=450.80.02 >=456.38

    CUDA Toolkit and Corresponding Driver Versions

    The version of the development NVIDIA GPU Driver packaged in each CUDA Toolkit release is shown below.

    Table 3. CUDA Toolkit and Corresponding Driver Versions

    CUDA ToolkitToolkit Driver Version
    Linux x86_64 Driver VersionWindows x86_64 Driver Version
    CUDA 11.3.1 Update 1 >=465.19.01 >=465.89
    CUDA 11.3.0 GA >=465.19.01 >=465.89
    CUDA 11.2.2 Update 2 >=460.32.03 >=461.33
    CUDA 11.2.1 Update 1 >=460.32.03 >=461.09
    CUDA 11.2.0 GA >=460.27.03 >=460.82
    CUDA 11.1.1 Update 1 >=455.32 >=456.81
    CUDA 11.1 GA >=455.23 >=456.38
    CUDA 11.0.3 Update 1 >= 450.51.06 >= 451.82
    CUDA 11.0.2 GA >= 450.51.05 >= 451.48
    CUDA 11.0.1 RC >= 450.36.06 >= 451.22
    CUDA 10.2.89 >= 440.33 >= 441.22
    CUDA 10.1 (10.1.105 general release, and updates) >= 418.39 >= 418.96
    CUDA 10.0.130 >= 410.48 >= 411.31
    CUDA 9.2 (9.2.148 Update 1) >= 396.37 >= 398.26
    CUDA 9.2 (9.2.88) >= 396.26 >= 397.44
    CUDA 9.1 (9.1.85) >= 390.46 >= 391.29
    CUDA 9.0 (9.0.76) >= 384.81 >= 385.54
    CUDA 8.0 (8.0.61 GA2) >= 375.26 >= 376.51
    CUDA 8.0 (8.0.44) >= 367.48 >= 369.30
    CUDA 7.5 (7.5.16) >= 352.31 >= 353.66
    CUDA 7.0 (7.0.28) >= 346.46 >= 347.62

    参考资料

    重要:Ubuntu 16.04下编译ffmpeg支持CUDA下的cuvid vnenc和NPP
    重要:Using FFmpeg with NVIDIA GPU Hardware Acceleration-nvidia官网
    非常重要:NVIDIA FFmpeg Transcoding Guide-nvidia官网

    NVIDIA FFmpeg 转码指南-中文版

    Using GPU hardware to speed up FFmpeg video transcoding and pit draining
    HWAccelIntro-ffmpeg官网

    图灵 H.264 视频编码速度和质量

    ffmpeg Nvidia硬件加速总结
    使用GPU硬件加速FFmpeg视频转码

    使用FFmpeg调用NVIDIA GPU实现H265转码H264

     
  • 相关阅读:
    Linux入门
    Python接入支付宝进行PC端支付
    DRF之注册器响应器分页器
    Sencha Touch 实战开发培训 视频教程 第二期 第七节
    Sencha Touch 实战开发培训 视频教程 第二期 第六节
    Sencha Touch 实战开发培训 视频教程 第二期 第五节
    sencha touch 百度地图扩展(2014-6-24)(废弃 仅参考)
    Sencha Touch 实战开发培训 视频教程 第二期 第四节
    Sencha Touch 实战开发培训 视频教程 第二期 第三节
    sencha touch 扩展官方NavigationView 灵活添加按钮组,导航栏,自由隐藏返回按钮(2014-5-15)
  • 原文地址:https://www.cnblogs.com/scw2901/p/14853339.html
Copyright © 2020-2023  润新知