• D


    题目:here

    题目大意:一个半径为R的圆以一个角度α和恒定速度v在一个L*W的场地中乱撞,撞墙后反射的方向与镜面反射相同。

    思路:首先,一个圆在[0,L]、[0,W]里乱撞,相当于一个这个圆的圆心在[R, L-R], [R, W-R]里乱撞。答案也是要圆心,那么只考虑圆心即可。之后,速度是恒定的,横向速度和纵向速度也是不变的,假设场地为无限大,那么我们一开始就可以算出 最终坐标(理论上来说极限数据会爆double的精度,但是AC了,我就不管了……要是真WA了我们可以试试long double……)。然后x、y完全可以分开算,他们之间一点影响都木有。于是考虑x,若有一堵墙在L-R处,如果没有墙L我们可以到达xi(超过了L- R),那么有墙我们就会到达2*(L-R) - xi;如果有墙在R,我们可以到达xi(小于R),那么我们就会到达2 * R - xi。不断重复直到xi落在[R, L-R]之间(极限数据这样搞可能会TLE,但是AC了,所以也不管了……)。Y一样搞法,不重复说了。

    PS:不要找我要证明我不会,我只能说我觉得这样搞是对的。

     1 #include <cstdio>
     2 #include <iostream>
     3 #include <algorithm>
     4 #include <cstring>
     5 #include <cmath>
     6 using namespace std;
     7 typedef long long LL;
     8 
     9 const double PI = acos(-1.0);
    10 const double EPS = 1e-4;
    11 
    12 LL L, W, x, y, R, a, v, s;
    13 
    14 int main() {
    15     //cout<<cos(PI/2)<<endl;
    16     while(cin>>L>>W>>x>>y>>R>>a>>v>>s) {
    17         if(L == 0 && W == 0 && x == 0 && y == 0 && R == 0 && a == 0 && v == 0 && s == 0) break;
    18         double nx = x + v * cos(PI * a / 180) * s, ny = y + v * sin(PI * a / 180) * s;
    19         L -= R;
    20         W -= R;
    21         while(R >= nx + EPS || nx - EPS >= L) {
    22             if(R >= nx) nx = 2 * R - nx;
    23             //if(nx >= 20 * L) nx = nx - 20 * L;
    24             if(nx >= L) nx = 2 * L - nx;
    25         }
    26         while(R >= ny + EPS || ny - EPS  >= W) {
    27             if(R >= ny) ny = 2 * R - ny;
    28             if(ny >= W) ny = 2 * W - ny;
    29         }
    30         printf("%.2f %.2f
    ", nx, ny);
    31     }
    32 }
  • 相关阅读:
    登录界面点击登录后如何延迟提示成功的div的显示时间并跳转
    关于如何用jq定位到某个元素的索引
    总结React关于require的问题
    关于React的赋值与调用方法
    React项目搭建(脚手架)
    关于th,td,tr的一些相关标签
    一个IP多个https站点配置
    ubuntu配置apache的虚拟主机
    putty如何使用
    CI基本配置
  • 原文地址:https://www.cnblogs.com/scnuacm/p/3280327.html
Copyright © 2020-2023  润新知