• KMP算法的next[]数组通俗解释


    背景

    KMP 算法是一种很有名的改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt提出的,因此人们称它为克努特—莫里斯—普拉特操作(简称KMP算法)。KMP算法的核心是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。具体实现就是通过一个next()函数实现。

    原文:KMP算法的前缀next数组最通俗的解释,如果看不懂我也没辙了

    正文

    我们在一个母字符串中查找一个子字符串有很多方法。KMP是一种最常见的改进算法,它可以在匹配过程中失配的情况下,有效地多往后面跳几个字符,加快匹配速度。当然我们可以看到这个算法针对的是子串有对称属性,如果有对称属性,那么就需要向前查找是否有可以再次匹配的内容。

    在KMP算法中有个数组,叫做前缀数组,也有的叫next数组,每一个子串有一个固定的next数组,它记录着字符串匹配过程中失配情况下可以向前多跳几个字符,当然它描述的也是子串的对称程度,程度越高,值越大,当然之前可能出现再匹配的机会就更大。

    这个next数组的求法是KMP算法的关键,但不是很好理解

    1、用一个例子来解释,下面是一个子串的next数组的值,可以看到这个子串的对称程度很高,所以next值都比较大。

    位置i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    前缀next[i] 0 0 0 0 1 2 3 1 2 3 4 5 6 7 4 0
    子串 a g c t a g c a g c t a g c t g

    申明一下:下面说的对称不是中心对称,而是中心字符块对称,比如不是abccba,而是abcabc这种对称。

    (1)逐个查找对称串。

    这个很简单,我们只要循环遍历这个子串,分别看前1个字符,前2个字符,3个... i个 最后到15个。

    第1个a无对称,所以对称程度0

    前两个ag无对称,所以也是0

    依次类推前面0-4都一样是0

    前5个agcta,可以看到这个串有一个a相等,所以对称程度为1前6个agctag,看得到ag和ag对成,对称程度为2

    这里要注意了,想是这样想,编程怎么实现呢?

    只要按照下面的规则:

    a、当前面字符的前一个字符的对称程度为0的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是0,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如agcta这个里面t的是0,那么后面的a的对称程度只需要看它是不是等于第一个字符a了。

    b、按照这个推理,我们就可以总结一个规律,不仅前面是0呀,如果前面一个字符的next值是1,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是1,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是2了。有两个字符对称了。比如上面agctag,倒数第二个a的next是1,说明它和第一个a对称了,接着我们就把最后一个g与第二个g比较,又相等,自然对称成都就累加了,就是2了。

    c、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。

    当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。

    (2)回头来找对称性

    这里已经不能继承前面了,但是还是找对称程度嘛,最愚蠢的做法大不了写一个子函数,查找这个字符串的最大对称程度,怎么写方法很多吧,比如查找出所有的当前字符串,然后向前走,看是否一直相等,最后走到子串开头,当然这个是最蠢的,我们一般看到的KMP都是优化过的,因为这个串是有规律的。

    在这里依然用上面表中一段来举个例子:

    位置i=0到14如下,我加的括号只是用来说明问题:

    (a g c t a g c )( a g c t a g c) t

    我们可以看到这段,最后这个t之前的对称程度分别是:1,2,3,4,5,6,7,倒数第二个c往前看有7个字符对称,所以对称为7。但是到最后这个t就没有继承前面的对称程度next值,所以这个t的对称性就要重新来求。

    这里首要要申明几个事实

    1、t 如果要存在对称性,那么对称程度肯定比前面这个c 的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么t就继承前面的对称性了。

    2、要找更小的对称,必然在对称内部还存在子对称,而且这个t必须紧接着在子对称之后。

    如下图说明。

    img

    img

    从上面的理论我们就能得到下面的前缀next数组的求解算法。

    void SetPrefix(const char *Pattern, int prefix[])
    
    {
    
       int len=CharLen(Pattern);//模式字符串长度。
    
       prefix[0]=0;
    
       for(int i=1; i<len; i++)
    
       {
    
    ​     int k=prefix[i-1];
    
    ​     //不断递归判断是否存在子对称,k=0说明不再有子对称,Pattern[i] != Pattern[k]说明虽然对称,但是对称后面的值和当前的字符值不相等,所以继续递推
    
    ​     while( Pattern[i] != Pattern[k] && k!=0 )        
    
    ​       k=prefix[k-1];   //继续递归
    
    ​     if( Pattern[i] == Pattern[k])//找到了这个子对称,或者是直接继承了前面的对称性,这两种都在前面的基础上++
    
    ​       prefix[i]=k+1;
    
    ​     else
    
    ​       prefix[i]=0;    //如果遍历了所有子对称都无效,说明这个新字符不具有对称性,清0
    
       }
    
    }
    

    通过这个说明,估计能够理解KMP的next求法原理了,剩下的就很简单了。我自己也有点晕了,实在不喜欢那些数学公式,所以用形象逻辑思维方法总结了一下。

    KMP还有一种写法:这个写法是经过N个人优化的:

    int  j = -1,  i = 0;
    next[0] = -1;
    while(i < len)
    {
              if(j == -1 || ss[i] == ss[j])
             {
                        i++;
                        j++;
                        next[i] = j;
             }
             else
            {
                       j = next[j];
            }
    }
    
  • 相关阅读:
    docker Dockerfile文件的编写部分命令
    docker命令总结
    docker安装笔记
    在docker容器下利用数据卷实现在删除了mysql容器或者镜像的情况下恢复数据
    在docker下运行mysql
    mysql在docker下运行,出现中文乱码
    group by问题
    python中安装requests后又提示错误
    python安装HTMLTestRunner
    python接口测试中安装whl格式的requests第三方模块
  • 原文地址:https://www.cnblogs.com/schips/p/12470517.html
Copyright © 2020-2023  润新知