• u-boot中添加mtdparts支持以及Linux的分区设置


    原文地址:https://www.cnblogs.com/pengdonglin137/p/4646269.html


    简介

    作者:彭东林

    邮箱:pengdonglin137@163.com

    u-boot版本:u-boot-2015.04

    Linux版本:Linux-3.14

    硬件平台:tq2440, 内存:64M   NandFlash: 256MB

    下面我们分两部分,u-boot和kernel,首先介绍u-boot中是如何支持mtdparts的,然后简单分析Linux内核设置分区的两种方式:

    方式一

        在平台代码中写死,然后在初始化NandFlash的时候设置。

    方式二

        在u-boot中设置,这个比较灵活,u-boot将分区信息(形如:mtdparts=xxx)添加到bootargs中,kernel在启动的时候会解析mtdparts。

    u-boot中支持mtdparts命令

    转载自:http://w3sun.blog.163.com/blog/static/1859535342012058369333/

    分区方法

         1)MTD层的分区

         2)通过U-boot传递给内核的命令行中的mtdparts=...

         3)其他可以让内核知道分区信息的任何办法,(内核默认的命令参数)

    下面说到mtdparts,及它的用法:

       mtdparts

       mtdparts=fc000000.nor_flash:1920k(linux),128k(fdt),20M(ramdisk),4M(jffs2),38272k(user),256k(env),384k(uboot)要想这个参数起作用,

    内核中的mtd驱动必须要支持,即内核配置时需要选上

           Device Drivers  --->

                Memory Technology Device (MTD) support  --->

                    Command line partition table parsing

    mtdparts的格式如下:

        mtdparts=<mtddef>[;<mtddef]

        <mtddef>  := <mtd-id>:<partdef>[,<partdef>]

        <partdef> := <size>[@offset][<name>][ro]

        <mtd-id>  := unique id used in mapping driver/device

        <size>    := standard linux memsize OR "-" to denote all remaining space

        <name>    := (NAME)

    因此你在使用的时候需要按照下面的格式来设置:

         mtdparts=mtd-id:<size1>@<offset1>(<name1>),<size2>@<offset2>(<name2>)

    这有几个需要注意的地方:

          a.mtd-id 必须要跟你当前平台的flash的mtd-id一致,不然整个mtdparts会失效 怎样获取到当前平台的flash的mtd-id?在bootargs参数列表中,可以指定当前flash的mtd-id,指定 mtdid

    s:nand0=gen_nand.1,前面的nand0则表示第一个flash

          b.size在设置的时候可以为实际的size(xxM,xxk,xx),也可以为'-'这表示剩余的所有空间。相

    关信息可以查看drivers/mtd/cmdlinepart.c中的注释找到相关描述。

           U-boot环境变量有两个,他们分别是: bootcmd 和bootargs。

    至于在我们自己的at91sam9263ek板子上为了实现mtdparts分区命令的支持需要在U-boot

    -2010.06/include/configs/at91sam9263ek.h中添加相关的宏定义:

    #define CONFIG_CMD_MTDPARTS

    #define CONFIG_MTD_DEVICE

    #define CONFIG_MTD_PARTITIONS

    加入MTD分区信息:

    #define MTDIDS_DEFAULT "nand0=atmel_nand"

    #define MTDPARTS_DEFAULT            "mtdparts=atmel_nand:15M@0(cramfs),"

                                        "15M(jffs2),"

                                        "30M(yaffs2),"

                                        "-(user)"

    保存后退出,回到根目录,重新make

    [root@localhost u-boot-2010.06]#make at91sam9263ek_dataflash_cs0_config

    [root@localhost u-boot-2010.06]#make all

    将重新编译的u-boot.bin烧到dataflash中,使用mtdparts查看分区:

    U-Boot> mtdparts

    device nand0 <atmel_nand>, # parts = 4

    #: name               size           offset         mask_flags

    0: cramfs             0x00f00000     0x00000000     0

    1: jffs2              0x00f00000     0x00f00000     0

    2: yaffs2             0x01e00000     0x01e00000     0

    3: user               0x04400000     0x03c00000     0

    active partition: nand0,0 - (cramfs) 0x00f00000 @ 0x00000000

    defaults:

    mtdids : nand0=atmel_nand

    mtdparts: mtdparts=atmel_nand:15M@0(cramfs),15M(jffs2),30M(yaffs2),-(user)

            重新设置分区:

    U-Boot> setenv mtdparts mtdparts=atmel_nand:30M@0(a),30M(b),-(c)

    U-Boot> save

    Saving Environment to dataflash...

    U-Boot> mtdparts

    device nand0 <atmel_nand>, # parts = 3

    #: name               size           offset         mask_flags

    0: a                  0x01e00000     0x00000000     0

    1: b                  0x01e00000     0x01e00000     0

    2: c                  0x04400000     0x03c00000     0

    active partition: nand0,0 - (a) 0x01e00000 @ 0x00000000

    defaults:

    mtdids : nand0=atmel_nand

    mtdparts: mtdparts=atmel_nand:15M@0(cramfs),15M(jffs2),30M(yaffs2),-(user)

            可以看到,我们可以手动设置分区了。最后还要恢复默认。

    U-Boot>mtdparts default

    Kernel中设置分区

    相关的内核代码我已经上传到csdn上了,使用git管理,分支是transplant_to_tq2440

    git clone git@code.csdn.net:pengdonglin137/linux-3-14-y.git

    在此之前我们先看看NandFlash是如何初始化的。

    这里采用platform_device和platform_driver架构。

    1. platform_device的注册

    在arch/arm/mach-s3c24xx/mach-tq2440.c中:

       1:  static struct platform_device *tq2440_devices[] __initdata = {
       2:                  ......
       3:      &s3c_device_nand,
       4:  };
       5:   
       6:  static void __init tq2440_machine_init(void)
       7:  {
       8:                 ......
       9:      s3c_nand_set_platdata(&tq2440_nand_info);
      10:      platform_add_devices(tq2440_devices, ARRAY_SIZE(tq2440_devices));
      11:                  ......
      12:  }
      13:   
      14:  MACHINE_START(TQ2440, "TQ2440")
      15:                  ........
      16:      .init_machine    = tq2440_machine_init,
      17:                  ......
      18:  MACHINE_END

    第5行是nand控制器的platform_device;

    第10行platform_add_device会将s3c_device_nand注册到系统中;

    第9行设置的就是分区相关的信息

       1:  /* NAND parititon */
       2:   
       3:  static struct mtd_partition tq2440_nand_part[] = {
       4:      [0] = {
       5:          .name    = "Boot",
       6:          .offset = 0,
       7:          .size    = SZ_2M,
       8:      },
       9:      [1] = {
      10:          .name    = "Kernel",
      11:          .offset    = SZ_2M,
      12:          .size    = SZ_1M * 3,
      13:      },
      14:      [2] = {
      15:          .name    = "Rootfs",
      16:          .offset = SZ_1M * 5,
      17:          .size    = MTDPART_SIZ_FULL,
      18:      }
      19:  };
      20:   
      21:  static struct s3c2410_nand_set tq2440_nand_sets[] = {
      22:      [0] = {
      23:          .name        = "NAND",
      24:          .nr_chips    = 1,
      25:          .nr_partitions    = ARRAY_SIZE(tq2440_nand_part),
      26:          .partitions    = tq2440_nand_part,
      27:      },
      28:  };
      29:   
      30:  /* choose a set of timings which should suit most 512Mbit
      31:   * chips and beyond.
      32:  */
      33:   
      34:  static struct s3c2410_platform_nand tq2440_nand_info = {
      35:      .tacls        = 10,
      36:      .twrph0        = 25,
      37:      .twrph1        = 10,
      38:      .nr_sets    = ARRAY_SIZE(tq2440_nand_sets),
      39:      .sets        = tq2440_nand_sets,
      40:  };

    3行的结构体tq2440_nand_part就是分区信息,容易看出,这里一共分了3个区,分别是Boot、Kernel和Rootfs:

    Boot

    (2MB)

    Kernel
    (3MB)

    Rootfs

    (剩余)

    然后将这个分区表存放到了第21行的tq2440_nand_set的元素[0]中,分区表的名字”NAND”,注意这里的名字很重要,将来u-boot中传入的mtdparts中的mtd-id一致。tq2440_nand_sets的每一个元素存放一张分区表;

    第34行的结构体tq2440_nand_info中的tacls/twrph0/twrph1用于控制Nand控制器读写NandFlash时的时序参数。

    s3c_device_nand是在文件arch/arm/plat-samsung/devs.c

       1:  /* NAND */
       2:   
       3:  #ifdef CONFIG_S3C_DEV_NAND
       4:  static struct resource s3c_nand_resource[] = {
       5:      [0] = DEFINE_RES_MEM(S3C_PA_NAND, SZ_1M),
       6:  };
       7:   
       8:  struct platform_device s3c_device_nand = {
       9:      .name        = "s3c2410-nand",
      10:      .id        = -1,
      11:      .num_resources    = ARRAY_SIZE(s3c_nand_resource),
      12:      .resource    = s3c_nand_resource,
      13:  };
      14:   
      15:  /*
      16:   * s3c_nand_copy_set() - copy nand set data
      17:   * @set: The new structure, directly copied from the old.
      18:   *
      19:   * Copy all the fields from the NAND set field from what is probably __initdata
      20:   * to new kernel memory. The code returns 0 if the copy happened correctly or
      21:   * an error code for the calling function to display.
      22:   *
      23:   * Note, we currently do not try and look to see if we've already copied the
      24:   * data in a previous set.
      25:   */
      26:  static int __init s3c_nand_copy_set(struct s3c2410_nand_set *set)
      27:  {
      28:      void *ptr;
      29:      int size;
      30:   
      31:      size = sizeof(struct mtd_partition) * set->nr_partitions;
      32:      if (size) {
      33:          ptr = kmemdup(set->partitions, size, GFP_KERNEL);
      34:          set->partitions = ptr;
      35:   
      36:          if (!ptr)
      37:              return -ENOMEM;
      38:      }
      39:   
      40:      if (set->nr_map && set->nr_chips) {
      41:          size = sizeof(int) * set->nr_chips;
      42:          ptr = kmemdup(set->nr_map, size, GFP_KERNEL);
      43:          set->nr_map = ptr;
      44:   
      45:          if (!ptr)
      46:              return -ENOMEM;
      47:      }
      48:   
      49:      if (set->ecc_layout) {
      50:          ptr = kmemdup(set->ecc_layout,
      51:                    sizeof(struct nand_ecclayout), GFP_KERNEL);
      52:          set->ecc_layout = ptr;
      53:   
      54:          if (!ptr)
      55:              return -ENOMEM;
      56:      }
      57:   
      58:      return 0;
      59:  }
      60:   
      61:  void __init s3c_nand_set_platdata(struct s3c2410_platform_nand *nand)
      62:  {
      63:      struct s3c2410_platform_nand *npd;
      64:      int size;
      65:      int ret;
      66:   
      67:      /* note, if we get a failure in allocation, we simply drop out of the
      68:       * function. If there is so little memory available at initialisation
      69:       * time then there is little chance the system is going to run.
      70:       */
      71:   
      72:      npd = s3c_set_platdata(nand, sizeof(struct s3c2410_platform_nand),
      73:                  &s3c_device_nand);
      74:      if (!npd)
      75:          return;
      76:   
      77:      /* now see if we need to copy any of the nand set data */
      78:   
      79:      size = sizeof(struct s3c2410_nand_set) * npd->nr_sets;
      80:      if (size) {
      81:          struct s3c2410_nand_set *from = npd->sets;
      82:          struct s3c2410_nand_set *to;
      83:          int i;
      84:   
      85:          to = kmemdup(from, size, GFP_KERNEL);
      86:          npd->sets = to;    /* set, even if we failed */
      87:   
      88:          if (!to) {
      89:              printk(KERN_ERR "%s: no memory for sets
    ", __func__);
      90:              return;
      91:          }
      92:   
      93:          for (i = 0; i < npd->nr_sets; i++) {
      94:              ret = s3c_nand_copy_set(to);
      95:              if (ret) {
      96:                  printk(KERN_ERR "%s: failed to copy set %d
    ",
      97:                  __func__, i);
      98:                  return;
      99:              }
     100:              to++;
     101:          }
     102:      }
     103:  }
     104:  #endif /* CONFIG_S3C_DEV_NAND */

    第72行将nand(也就是tq2440_nand_info)的副本存放到s3c_device_nand的dev.platform_data中,然后将nand的副本首地址npd返回;

    第79行到第100行将tq2440_nand_info的分区信息拷贝一份,赋值给npd的sets成员;

    2. platform_driver的注册

    文件:drivers/mtd/nand/s3c2410.c

       1:  /* driver device registration */
       2:   
       3:  static struct platform_device_id s3c24xx_driver_ids[] = {
       4:      {
       5:          .name        = "s3c2410-nand",
       6:          .driver_data    = TYPE_S3C2410,
       7:      }, {
       8:          .name        = "s3c2440-nand",
       9:          .driver_data    = TYPE_S3C2440,
      10:      }, {
      11:          .name        = "s3c2412-nand",
      12:          .driver_data    = TYPE_S3C2412,
      13:      }, {
      14:          .name        = "s3c6400-nand",
      15:          .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
      16:      },
      17:      { }
      18:  };
      19:   
      20:  MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
      21:   
      22:  static struct platform_driver s3c24xx_nand_driver = {
      23:      .probe        = s3c24xx_nand_probe,
      24:      .remove        = s3c24xx_nand_remove,
      25:      .suspend    = s3c24xx_nand_suspend,
      26:      .resume        = s3c24xx_nand_resume,
      27:      .id_table    = s3c24xx_driver_ids,
      28:      .driver        = {
      29:          .name    = "s3c24xx-nand",
      30:          .owner    = THIS_MODULE,
      31:      },
      32:  };
      33:   
      34:  module_platform_driver(s3c24xx_nand_driver);

    当注册s3c24xx_nand_driver的时候,由于s3c24xx_driver_ids中的”s3c2410-nand”与s3c_device_nand的name一致,因此函数s3c24xx_nand_probe被执行。

    下面我们简要分析函数s3c24xx_nand_probe的实现:

       1:  /* s3c24xx_nand_probe
       2:   *
       3:   * called by device layer when it finds a device matching
       4:   * one our driver can handled. This code checks to see if
       5:   * it can allocate all necessary resources then calls the
       6:   * nand layer to look for devices
       7:  */
       8:  static int s3c24xx_nand_probe(struct platform_device *pdev)
       9:  {
      10:      struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
      11:      enum s3c_cpu_type cpu_type;
      12:      struct s3c2410_nand_info *info;
      13:      struct s3c2410_nand_mtd *nmtd;
      14:      struct s3c2410_nand_set *sets;
      15:      struct resource *res;
      16:      int err = 0;
      17:      int size;
      18:      int nr_sets;
      19:      int setno;
      20:   
      21:      cpu_type = platform_get_device_id(pdev)->driver_data;
      22:   
      23:      pr_debug("s3c2410_nand_probe(%p)
    ", pdev);
      24:   
      25:      info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
      26:      if (info == NULL) {
      27:          err = -ENOMEM;
      28:          goto exit_error;
      29:      }
      30:   
      31:      platform_set_drvdata(pdev, info);
      32:   
      33:      spin_lock_init(&info->controller.lock);
      34:      init_waitqueue_head(&info->controller.wq);
      35:   
      36:      /* get the clock source and enable it */
      37:   
      38:      info->clk = devm_clk_get(&pdev->dev, "nand");
      39:      if (IS_ERR(info->clk)) {
      40:          dev_err(&pdev->dev, "failed to get clock
    ");
      41:          err = -ENOENT;
      42:          goto exit_error;
      43:      }
      44:   
      45:      s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
      46:   
      47:      /* allocate and map the resource */
      48:   
      49:      /* currently we assume we have the one resource */
      50:      res = pdev->resource;
      51:      size = resource_size(res);
      52:   
      53:      info->device    = &pdev->dev;
      54:      info->platform    = plat;
      55:      info->cpu_type    = cpu_type;
      56:   
      57:      info->regs = devm_ioremap_resource(&pdev->dev, res);
      58:      if (IS_ERR(info->regs)) {
      59:          err = PTR_ERR(info->regs);
      60:          goto exit_error;
      61:      }
      62:   
      63:      dev_dbg(&pdev->dev, "mapped registers at %p
    ", info->regs);
      64:   
      65:      /* initialise the hardware */
      66:   
      67:      err = s3c2410_nand_inithw(info);
      68:      if (err != 0)
      69:          goto exit_error;
      70:   
      71:      sets = (plat != NULL) ? plat->sets : NULL;
      72:      nr_sets = (plat != NULL) ? plat->nr_sets : 1;
      73:   
      74:      info->mtd_count = nr_sets;
      75:   
      76:      /* allocate our information */
      77:   
      78:      size = nr_sets * sizeof(*info->mtds);
      79:      info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
      80:      if (info->mtds == NULL) {
      81:          err = -ENOMEM;
      82:          goto exit_error;
      83:      }
      84:   
      85:      /* initialise all possible chips */
      86:   
      87:      nmtd = info->mtds;
      88:   
      89:      for (setno = 0; setno < nr_sets; setno++, nmtd++) {
      90:          pr_debug("initialising set %d (%p, info %p)
    ",
      91:               setno, nmtd, info);
      92:   
      93:          s3c2410_nand_init_chip(info, nmtd, sets);
      94:   
      95:          nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
      96:                           (sets) ? sets->nr_chips : 1,
      97:                           NULL);
      98:   
      99:          if (nmtd->scan_res == 0) {
     100:              s3c2410_nand_update_chip(info, nmtd);
     101:              nand_scan_tail(&nmtd->mtd);
     102:              s3c2410_nand_add_partition(info, nmtd, sets);
     103:          }
     104:   
     105:          if (sets != NULL)
     106:              sets++;
     107:      }
     108:   
     109:      err = s3c2410_nand_cpufreq_register(info);
     110:      if (err < 0) {
     111:          dev_err(&pdev->dev, "failed to init cpufreq support
    ");
     112:          goto exit_error;
     113:      }
     114:   
     115:      if (allow_clk_suspend(info)) {
     116:          dev_info(&pdev->dev, "clock idle support enabled
    ");
     117:          s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
     118:      }
     119:   
     120:      pr_debug("initialised ok
    ");
     121:      return 0;
     122:   
     123:   exit_error:
     124:      s3c24xx_nand_remove(pdev);
     125:   
     126:      if (err == 0)
     127:          err = -EINVAL;
     128:      return err;
     129:  }

    第10行,获得tq2440_nand_info,其实是它的副本;

    第21行,cpu_type是TYPE_S3C2410;

    第38行,获得nand控制器的时钟;

    第45行,使能nand控制器的时钟;

    第67行,初始化nand控制器;

    第72行,nr_sets的值是1;

    第93行,根据cpu_type的设置初始化一些函数指针,如读函数、写函数以及片选函数;

    第95行,读取NandFlash的ID,以及容量、规格(如pagesize),成功返回0;

    第100行,设置一些关于ecc的信息;

    第101行,设置一些关于oob读写的信息;

    下面重点分析第102行的函数:s3c2410_nand_add_partition

       1:  static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
       2:                        struct s3c2410_nand_mtd *mtd,
       3:                        struct s3c2410_nand_set *set)
       4:  {
       5:      if (set) {
       6:          mtd->mtd.name = set->name;
       7:   
       8:          return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
       9:                       set->partitions, set->nr_partitions);
      10:      }
      11:   
      12:      return -ENODEV;
      13:  }

    第6行的set->name就是”Nand”

    第9行的set->partitions中存放的是分区表,set->nr_partitions存放的是这个分区表的包含的分区个数

       1:  int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
       2:                    struct mtd_part_parser_data *parser_data,
       3:                    const struct mtd_partition *parts,
       4:                    int nr_parts)
       5:  {
       6:      int err;
       7:      struct mtd_partition *real_parts;
       8:   
       9:      err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
      10:      if (err <= 0 && nr_parts && parts) {
      11:          real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
      12:                       GFP_KERNEL);
      13:          if (!real_parts)
      14:              err = -ENOMEM;
      15:          else
      16:              err = nr_parts;
      17:      }
      18:   
      19:      if (err > 0) {
      20:          err = add_mtd_partitions(mtd, real_parts, err);
      21:          kfree(real_parts);
      22:      } else if (err == 0) {
      23:          err = add_mtd_device(mtd);
      24:          if (err == 1)
      25:              err = -ENODEV;
      26:      }
      27:   
      28:      return err;
      29:  }

    第9行,parse_mtd_partitions用于解析命令行中设置的分区,如果命令行中没有设置mtdparts,那么返回0,如果设置了,并且解析没问题,那么返回大于零的数(也就是解析到的分区的个数),否则返回小于零的数。  

    如果没有设置mtdparts或者解析失败,那么real_parts就来自代码中写好的分区。然后,调用add_mtd_partitions添加分区。

    下面我们看一下parse_mtd_partitions的实现:

       1: int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
       2:              struct mtd_partition **pparts,
       3:              struct mtd_part_parser_data *data)
       4: {
       5:     struct mtd_part_parser *parser;
       6:     int ret = 0;
       7:  
       8:     if (!types)
       9:         types = default_mtd_part_types;
      10:  
      11:     for ( ; ret <= 0 && *types; types++) {
      12:         parser = get_partition_parser(*types);
      13:         if (!parser && !request_module("%s", *types))
      14:             parser = get_partition_parser(*types);
      15:         if (!parser)
      16:             continue;
      17:         ret = (*parser->parse_fn)(master, pparts, data);
      18:         put_partition_parser(parser);
      19:         if (ret > 0) {
      20:             printk(KERN_NOTICE "%d %s partitions found on MTD device %s
    ",
      21:                    ret, parser->name, master->name);
      22:             break;
      23:         }
      24:     }
      25:     return ret;
      26: }

    传入参数types是NULL,所以types赋值为default_mtd_part_types,即

    static const char * const default_mtd_part_types[] = {
        "cmdlinepart",
        "ofpart",
        NULL
    };

    然后将”cmdlinepart”传递给函数get_partition_parser,这个函数返回名为”cmdlinepart”的解析器,然后在第17行调用这个解析器的解析函数,给pparts赋值,并返回分区个数。get_partition_parser的实现很简单:

       1: static struct mtd_part_parser *get_partition_parser(const char *name)
       2: {
       3:     struct mtd_part_parser *p, *ret = NULL;
       4:  
       5:     spin_lock(&part_parser_lock);
       6:  
       7:     list_for_each_entry(p, &part_parsers, list)
       8:         if (!strcmp(p->name, name) && try_module_get(p->owner)) {
       9:             ret = p;
      10:             break;
      11:         }
      12:  
      13:     spin_unlock(&part_parser_lock);
      14:  
      15:     return ret;
      16: }
    第7行遍历part_parsers,所有的解析器都存放在链表part_parsers中,然后比较解析器的name。那么接下来就需要看part_parsers的成员的来源。
    名为”cmdlinepart”的解析器是在文件drivers/mtd/cmdlinepart.c中注册的,需要配置内核,将这个文件编译进内核。
    Device Drivers  --->
        <*> Memory Technology Device (MTD) support  --->
           <*>   Command line partition table parsing

    假设u-boot传入的bootargs的值是:

    noinitrd root=/dev/mtdblock3 rootfstype=yaffs2  init=/linuxrc console=ttySAC0,115200n mtdparts=tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)

    其中,根据经验,内核中一定会有类似 __setup(“mtdparts=”, xxx)的结果,其实就在文件cmdlinepart.c中:

       1: static int __init mtdpart_setup(char *s)
       2: {
       3:     cmdline = s;
       4:     return 1;
       5: }
       6:  
       7: __setup("mtdparts=", mtdpart_setup);

    所以当遇到“mtdparts=tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)”时,函数mtdpart_setup就会被调用,并将mtdparts的值作为参数,所以cmdline就指向”tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)”.

    下面是解析器的注册:

       1: static struct mtd_part_parser cmdline_parser = {
       2:     .owner = THIS_MODULE,
       3:     .parse_fn = parse_cmdline_partitions,
       4:     .name = "cmdlinepart",
       5: };
       6:  
       7: static int __init cmdline_parser_init(void)
       8: {
       9:     if (mtdparts)
      10:         mtdpart_setup(mtdparts);
      11:     register_mtd_parser(&cmdline_parser);
      12:     return 0;
      13: }
      14:  
      15: module_init(cmdline_parser_init);

    第11行调用了注册函数

    第3行就是解析器的解析函数,他负责解析cmdline,并给pparts赋值。

       1: static int parse_cmdline_partitions(struct mtd_info *master,
       2:                     struct mtd_partition **pparts,
       3:                     struct mtd_part_parser_data *data)
       4: {
       5:     unsigned long long offset;
       6:     int i, err;
       7:     struct cmdline_mtd_partition *part;
       8:     const char *mtd_id = master->name;
       9:  
      10:     /* parse command line */
      11:     if (!cmdline_parsed) {
      12:         err = mtdpart_setup_real(cmdline);
      13:         if (err)
      14:             return err;
      15:     }
      16:  
      17:     /*
      18:      * Search for the partition definition matching master->name.
      19:      * If master->name is not set, stop at first partition definition.
      20:      */
      21:     for (part = partitions; part; part = part->next) {
      22:         if ((!mtd_id) || (!strcmp(part->mtd_id, mtd_id)))
      23:             break;
      24:     }
      25:  
      26:     if (!part)
      27:         return 0;
      28:  
      29:     for (i = 0, offset = 0; i < part->num_parts; i++) {
      30:         if (part->parts[i].offset == OFFSET_CONTINUOUS)
      31:             part->parts[i].offset = offset;
      32:         else
      33:             offset = part->parts[i].offset;
      34:  
      35:         if (part->parts[i].size == SIZE_REMAINING)
      36:             part->parts[i].size = master->size - offset;
      37:  
      38:         if (offset + part->parts[i].size > master->size) {
      39:             printk(KERN_WARNING ERRP
      40:                    "%s: partitioning exceeds flash size, truncating
    ",
      41:                    part->mtd_id);
      42:             part->parts[i].size = master->size - offset;
      43:         }
      44:         offset += part->parts[i].size;
      45:  
      46:         if (part->parts[i].size == 0) {
      47:             printk(KERN_WARNING ERRP
      48:                    "%s: skipping zero sized partition
    ",
      49:                    part->mtd_id);
      50:             part->num_parts--;
      51:             memmove(&part->parts[i], &part->parts[i + 1],
      52:                 sizeof(*part->parts) * (part->num_parts - i));
      53:             i--;
      54:         }
      55:     }
      56:  
      57:     *pparts = kmemdup(part->parts, sizeof(*part->parts) * part->num_parts,
      58:               GFP_KERNEL);
      59:     if (!*pparts)
      60:         return -ENOMEM;
      61:  
      62:     return part->num_parts;
      63: }

    第8行,将master->name的值赋值给mtd_id,根据上面的代码可以知道,master->id就是”Nand”;

    第12行,解析cmdline,并构造相关的结构体,解析出来的分区添加到链表partitions中,对于我们的例子:

    tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)

    一共有4个分区:

    分区表名字: tq2440-0

    分区1:spl   0x0 --- 0x100000  只读

    分区2:u-boot 0x100000 --- 0x200000 只读

    分区3:kernel 0x200000 --- 0x500000 只读

    分区4:rootfs 0x500000 --- 0x10000000

    第21行到24行,比较从mtdparts中解析到的mtd_id与master->id,如果不相等,最终第26行的part就是NULL,返回零。否则,将解析到的分区表存放到pparts中,并返回分区个数。

    解析完分区表后,紧接着就调用了函数add_mtd_partitions,这个函数完成了分区的设置。有兴趣可以分析一下这个函数的实现,他的参数real_parts可以来自mtdparts,也可以来自平台代码。

    代码先分析到这里,接下来说一下如果要支持mtdparts,需要注意的一些问题:

    1. 分区表的名字要一致

    如,我们的例子是 mtdparts=tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs),这里mtd_id的值是tq2440-0,那么在kernel的平台代码中也必须有一个名为tq2440-0的分区表,平台代码中的那张分区表可以为空,因为如果mtdparts中已经有了,就不会解析平台代码中设置的分区表,但是分区表的名字还是要匹配的。kernel中默认的分区表的名字是“Nand”:

    static struct s3c2410_nand_set tq2440_nand_sets[] = {
        [0] = {
            .name        = "NAND",
            .nr_chips    = 1,
            .nr_partitions    = ARRAY_SIZE(tq2440_nand_part),
            .partitions    = tq2440_nand_part,
        },
    };
    

    所以, 为了保持一致,可以修改这里的name,改成如下所示:

    static struct s3c2410_nand_set tq2440_nand_sets[] = {
        [0] = {
            .name        = "tq2440-0",
            .nr_chips    = 1,
            .nr_partitions    = ARRAY_SIZE(tq2440_nand_part),
            .partitions    = tq2440_nand_part,
        },
    };

    可以将mtdparts设置的值与平台代码汇总

    2. mtdparts的设置

    mtdparts=tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)

    等价于

    mtdparts=tq2440-0:1m(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)

    完。

  • 相关阅读:
    Fast AutoAugment阅读笔记
    object as point阅读笔记
    Hardware-in-the-loop End-to-end Optimization of Camera Image Processing Pipelines阅读笔记
    TP框架使用命令行
    shopee常见的刊登报错问题
    TP执行队列的命令
    正则匹配手机号码
    时间格式化转换
    使用fixed定位将元素(如按钮)悬浮在页面底部
    LNMP一键安装教程
  • 原文地址:https://www.cnblogs.com/schips/p/11670696.html
Copyright © 2020-2023  润新知