• 有向图,无向图有关概念


    图的定义:

      图在数据结构中是中一对多的关系,一般分为无向图与无向图

      常用 邻接矩阵 或者 邻接链表 来表示图中结点的关系

      ⑴图是由顶点集V和顶点间的关系集合E(边的集合)组成的一种数据结构
      ⑵用二元组定义为:G=(V,E)。

      例如:

        对于图7-1所示的无向图G1和有向图G2,它们的数据结构可以描述为:

          G1=(V1,E1), 其中 V1={a,b,c,d},E1={(a,b),(a,c),(a,d),(b,d),(c,d)},
                     G2=(V2,E2),其中 V2={1,2,3}, E2={<1,2>,<1,3>,<2,3>,<3,1>}。

    有向图与无向图

        ⑴在图中,若用箭头标明了边是有方向性的,则称这样的图为有向图,否则称为无向图。

        如图7-1中:
             ①G1为无向图,   ②G2 为有向图。
        ⑵在无向图中:一条边(x,y)与(y,x)表示的结果相同,用圆括号表示,
        ⑶在有向图中:一条边<x,y>与<y,x>表示的结果不相同,故用尖括号表示。<x,y>表示从顶点x发向顶点y的边,x为始点,y为终点。
        ⑷有向边也称为弧,x为弧尾,y为弧头,则<x,y>表示为一条弧, 而<y,x>表示y为弧尾,x为弧头的另一条弧 。

    完全图/稠密图/稀疏图:

      ⑴具有n个顶点,n(n-1)/2条边的图,称为完全无向图,
      ⑵具有n个顶点,n(n-1) 条弧的有向图,称为完全有向图。
      ⑶完全无向图和完全有向图都称为完全图。
      ⑷对于一般无向图,顶点数为n,边数为e,则 0≤e  ≤n(n-1)/2。
      ⑸对于一般有向图,顶点数为n,弧数为e, 则 0≤e≤n(n-1)  。
      ⑹当一个图接近完全图时,则称它为稠密图,
      ⑺当一个图中含有较少的边或弧时,则称它为稀疏图。

    度/出度/入度:

      ⑴在图中,一个顶点依附的边或弧的数目,称为该顶点的度。

      ⑵在有向图中,一个顶点依附的弧头数目,称为该顶点的入度。

      ⑶一个顶点依附的弧尾数目,称为该顶点的出度,某个顶点的入度和出度之和称为该顶点的度。

      ⑷若图中有n个顶点,e条边或弧,第i个顶点的度为di,则有  e=1/2 * Σ(1<= i <= n,   di)


    子图

    ⑴若有两个图G1和G2, G1=(V1,E1), G2=(V2,E2), 满足如下条件:
        V2⊆V1  ,E2⊆ E1,即V2为V1的子集,E2为E1的子集,则 称图G2为图G1的子图。

    权:


    ⑴在图的边或弧中给出相关的数,称为权。
    ⑵权可以代表一个顶点到另一个顶点的距离,耗费
       等,带权图一般称为网。






     

       一个图由多个结点以及边组成。

      无向图例子:

      

      有向图例子:

      

      从上述例子中可以看出,一个图表是由数个顶点和边组成的。

      其中,无向图的边是没方向的,即两个相连的顶点可以互相抵达。

      而有向图的边是有方向的,即两个相连的顶点,根据边的方向,只能由一个顶点通向另一个顶点。(当然,如有向图例子中的2和3,由于有两个指向对方的方向,所以2和3是互通的。)

  • 相关阅读:
    pip安装requests时报 Requirement already satisfied: requests in d:pythonpyth... 的问题解决
    渗透测试靶场
    Spring Security核心类关系图
    Spring security 5 Authorize Configuration
    固定技术栈
    redis 指定端口 启动
    Spring 获取当前activeProfile
    通过进程编号 查询 监听端口
    lombok 插件安装
    idea 快捷键设置
  • 原文地址:https://www.cnblogs.com/schips/p/10632250.html
Copyright © 2020-2023  润新知