• poj 2762 Going from u to v or from v to u?


    强连通分量

    题意:给一个有向图,对于图中任意两个点u,v,如果从u能到v,或者,v能到u,则这对顶点是可行的,如果图中任意一对顶点都是可行的,可以输出Yes,否则输出No

    这个的话,就不是裸的强连通分量了。思考一下,对于一个有向图而言,里面的强连通分量肯定满足题目的条件,因为强连通分量内是u可到v,而且,v可到u,所以我们第一步工作就是强连通分量缩点,变为一个DAG。对于这个DAG里面的任意两个点U,V,如果满足题目的条件,那么点U,V里面包含的原图的点也肯定是满足的

    所以问题转化为怎么判断这个DAG是满足题目条件呢?其实判断很简单,就是看这个DAG里面有多少个点的入度为0,多少个点出度为0

    如果DAG中,有2个或2个以上的点的入度为0,那么这个DAG就是No,因为这说明有两个点是无法“进去”的,没有点能“进去”U,也没有点能“进去”V,那么这两个点肯定互相不能“进去”,即到达

    如果DAG中,有2个或2个以上的点的出度为0,那么这个DAG就是No,因为说明这两个点是无法“出去的”。

    反证法,点U和V,它们出度都是0,假设它们满足题目条件,从U能到V,或者从V能到U

    1.因为点U出度为0,所以无法“出去”,它肯定无法到达V

    2.因为点V出度为0,所以无法“出去”,它肯定无法到达U

    3.综上,点U无法到达V,点V无法到达点U,与假设矛盾,所以与题目不成立

    那么什么最后一个问题,如果这个DAG,入度为0的点的个数 <= 1 , 出度为0的点的个数 <= 1 , 它就一定Yes吗?

    这个就比较容易想了,首先,1个DAG中,不可能所有点都有入度,即入度为0的点个数为0,是不可能发生的。同样的,可能所有点都有出度,即出度为0的点个数为0,是不可能发生的

    那剩下的情况就是,1个点入度为0为u,1个点出度为0为v。这个图,呈现一个“橄榄形”。如果从点u走到点v,能经过所有的点,那么就是Yes,否则是No。因为无法经过所有的点的话,说明图中出现了“分叉”,这种“分叉”必定导致两个点互相不可达。而从u到v,经过所有点,其实就是把这个DAG变成了一条链,就是判断这个DAG是否存在一条链贯穿所有点

    怎么判断链呢?可以转化为拓扑排序,或者DP最长路

    拓扑:拓扑排序可能有多种结果,但是如果是一个最长链,结果则是唯一的,结果要唯一,其实就是从初始化开始,到后面的任何一次删弧入队操作,都是保证了每次都只有一个元素入队,即永远只有一个元素的入度为0,如果中途有一次出现了有两个点入度为0,那么其实代表出现了一种“分叉”

    而且拓扑排序可以综合掉前面的情况,不需要特判DAG有几个点入度为0,出度为0,直接拓扑,在拓扑过程就已经判断了

    DP:d[i]表示从i点(缩点后的i点)出发能走出的最长路,只要有一个点,d[i] = N , 说明这个点出发能走遍所有点,那么就是一个最长链,输出Yes,否则No

    两个代码,前面部分都是相同的,即Tarjan缩点,只有后面不同,一个是int topsort()   ,  一个是  int DP()

    不过,这题的数据太弱了,一开始我想错了判断链的地方,写了个很简单的,后来测试错得一塌糊涂,但是POJ还是给了我AC.......

    拓扑

    //判断整个图是不是强连通分量
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <stack>
    #include <queue>
    using namespace std;
    #define N 1010
    #define M 6010
    
    vector<int>ver[N];
    vector<int>e[N];
    stack<int>sta;
    queue<int>que;
    int n,tot;
    int dfn[N],low[N],belong[N],inde[N],ins[N],dcnt,bcnt;
    
    void dfs(int u)
    {
        dfn[u] = low[u] = ++dcnt;
        sta.push(u); ins[u] = 1;
        for(int i=0; i<ver[u].size(); i++)
        {
            int v = ver[u][i];
            if(!dfn[v])
            {
                dfs(v);
                low[u] = min(low[u] , low[v]);
            }
            else if(ins[v])
                low[u] = min(low[u] , dfn[v]);
        }
        if(dfn[u] == low[u])
        {
            bcnt++;
            while(true)
            {
                int x = sta.top();
                belong[x] = bcnt;
                ins[x] = 0;
                sta.pop();
                if(x == u) break;
            }
        }
    }
    
    int topsort()
    {
        int count;
        while(!que.empty()) que.pop();
        count = 0;
        for(int i=1; i<=bcnt; i++)
            if(!inde[i])
            { count++; que.push(i);}
        if(count > 1) return 0; //入度为0的点超过1个
        while(!que.empty())
        {
            int u = que.front();
            que.pop();
            count = 0;
            for(int i=0; i<e[u].size(); i++)
            {
                int v = e[u][i];
                inde[v]--;
                if(!inde[v])
                { count++; que.push(v); }
            }
            if(count > 1) return 0; //删弧后,同时出现了两个点入度为0
        }
        return 1;
    }
    
    void solve()
    {
        for(int i=1; i<=n; i++)
            if(!dfn[i])
                dfs(i);
        memset(inde,0,sizeof(inde));
        for(int i=1; i<=bcnt; i++) e[i].clear();
    
        for(int i=1; i<=n; i++)  
            for(int j=0; j<ver[i].size(); j++)
            {   //统计入度,并且给缩点后的DAG建图
                int u = belong[i];
                int v = belong[ver[i][j]];
                if(u != v) 
                { inde[v]++; e[u].push_back(v); } //重新建图
            }
        int ok = topsort(); //拓扑排序判断 
        if(ok) cout << "Yes" << endl;
        else   cout << "No" << endl;
    }
    
    int main()
    {
        int cas;
        cin >> cas;
        while(cas--)
        {
            cin >> n >> tot;
            dcnt = bcnt = 0;
            while(!sta.empty()) sta.pop();
            for(int i=1; i<=n; i++)
            {
                ver[i].clear();
                dfn[i] = ins[i] = 0;
            }
            while(tot--)
            {
                int u,v;
                cin >> u >> v;
                ver[u].push_back(v);
            }
            solve();
        }
        return 0;
    }

    DP

    //判断整个图是不是强连通分量
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <stack>
    #include <queue>
    using namespace std;
    #define N 1010
    #define M 6010
    
    vector<int>ver[N];
    vector<int>e[N];
    stack<int>sta;
    queue<int>que;
    int n,tot;
    int dfn[N],low[N],belong[N],ins[N],d[N],dcnt,bcnt;
    
    void dfs(int u)
    {
        dfn[u] = low[u] = ++dcnt;
        sta.push(u); ins[u] = 1;
        for(int i=0; i<ver[u].size(); i++)
        {
            int v = ver[u][i];
            if(!dfn[v])
            {
                dfs(v);
                low[u] = min(low[u] , low[v]);
            }
            else if(ins[v])
                low[u] = min(low[u] , dfn[v]);
        }
        if(dfn[u] == low[u])
        {
            bcnt++;
            while(true)
            {
                int x = sta.top();
                belong[x] = bcnt;
                ins[x] = 0;
                sta.pop();
                if(x == u) break;
            }
        }
    }
    
    void dp(int u)
    {
        if(d[u] != -1) return ;
        d[u] = 1;
        for(int i=0; i<e[u].size(); i++)
        {
            int v = e[u][i];
            dp(v);
            if(d[v] + 1 > d[u]) d[u] = d[v] + 1;
        }
    }
    
    int DP()
    {
        memset(d,-1,sizeof(d));
        for(int i=1; i<=bcnt; i++)
            if(d[i] == -1)
            {
                d[i] = 1;
                for(int k=0; k<e[i].size(); k++)
                {
                    int j = e[i][k];
                    dp(j);
                    if(d[j] + 1 > d[i]) d[i] = d[j] + 1;
                }
                if(d[i] >= bcnt) return 1;
            }
            else if(d[i] >= bcnt) return 1;
        return 0;
    }
    
    void solve()
    {
        for(int i=1; i<=n; i++)
            if(!dfn[i])
                dfs(i);
    
        for(int i=1; i<=bcnt; i++) e[i].clear();
    
        for(int i=1; i<=n; i++)  
            for(int j=0; j<ver[i].size(); j++)
            {   //统计入度,并且给缩点后的DAG建图
                int u = belong[i];
                int v = belong[ver[i][j]];
                if(u != v) e[u].push_back(v);  //重新建图
            }
        //int ok = topsort(); //拓扑排序判断 
        int ok = DP();
        if(ok) cout << "Yes" << endl;
        else   cout << "No" << endl;
    }
    
    int main()
    {
        int cas;
        cin >> cas;
        while(cas--)
        {
            cin >> n >> tot;
            dcnt = bcnt = 0;
            while(!sta.empty()) sta.pop();
            for(int i=1; i<=n; i++)
            {
                ver[i].clear();
                dfn[i] = ins[i] = 0;
            }
            while(tot--)
            {
                int u,v;
                cin >> u >> v;
                ver[u].push_back(v);
            }
            solve();
        }
        return 0;
    }
  • 相关阅读:
    linux(cat,more,less,head)——对文件显示进行查看操作
    linux(ln)
    Linux(touch)
    Linux(cp)
    Linux(rmdir,rm,mv)
    Linux(mkdir)
    一个对象是否能够引用该类其他实例的私有成员?
    圆角图标
    android.content.ReceiverCallNotAllowedException问题解决
    list view item高度设置
  • 原文地址:https://www.cnblogs.com/scau20110726/p/3094495.html
Copyright © 2020-2023  润新知