• scau ooxx numbers


    数论+打表

    A的所有因子和位B,B的所有的因子和为A,则称{A,B}是一对ooxx number

    输入数字n,求出[1,n]里面有多少对ooxx number,其中(A,B),(B,A)这样算作一对

    n最大为5百万(50000000)

    hits 
    220=  (1+2+4+71+142)  <---  284,
    284=  (1+2+4+5+10+11+20+22+44+55+110)   <---   220。
    220 and 280 is a pair of ooxx numbers

    sample input

    300
    1300

    sample output
    1
    2


    定义sum[i]=i的因子和,用筛法来构建i
    枚举因子i,那么2i,3i,4i…………都包含i这个因子,i都是它们因子和的一部分,所以要 sum[2i] += i; sum[3i] += i; sum[4i] += i;
    用筛法能求出所有的sum[i],不过还没完,它们都缺了1,不过可以等下加进去即可

    然后就是看看所有的sum[i],
    m = sum[i] + 1 , 且 i = sum[m] + 1 ;
    那么(m,i)就是一对ooxxnumber,这这个判断只需要扫一遍sum数组即可

    以上过程可以记录下所有的对,用时大概是2s多,会发现这些对其实不多,直接输出到文件中,然后打表即可
    在每个case中输入n后,扫描对,找到合适的对就计数


    打表程序
    #include <cstdio>
    #include <cstring>
    
    const int N = 5000000 ;
    
    int sum[N+10];
    
    void init()
    {
       memset(sum,0,sizeof(sum));
       int m = N/2;
       for(int i=2; i<=m; i++)
          for(int j=i+i; j<=N; j+=i)
             sum[j] += i;
    
       for(int i=2; i<=N; i++)
       {
          int mm= sum[i]+1;
          if(mm <= N && mm>i && sum[mm]+1 == i )
             printf("%d,%d,",i,mm);
       }
    }
    
    int main()
    {
       freopen("list.txt","w",stdout);
       init();
       return 0;
    }

    最后的程序

    #include <cstdio>
    #include <cstring>
    
    int sum[10000][2]={220,284,1184,1210,
                     2620,2924,5020,5564,
                     6232,6368,10744,10856,
                     12285,14595,17296,18416,
                     63020,76084,66928,66992,
                     67095,71145,69615,87633,
                     79750,88730,100485,124155,
                     122265,139815,122368,123152,
                     141664,153176,142310,168730,
                     171856,176336,176272,180848,
                     185368,203432,196724,202444,
                     280540,365084,308620,389924,
                     319550,430402,356408,399592,
                     437456,455344,469028,486178,
                     503056,514736,522405,525915,
                     600392,669688,609928,686072,
                     624184,691256,635624,712216,
                     643336,652664,667964,783556,
                     726104,796696,802725,863835,
                     879712,901424,898216,980984,
                     947835,1125765,998104,1043096,
                     1077890,1099390,1154450,1189150,
                     1156870,1292570,1175265,1438983,
                     1185376,1286744,1280565,1340235,
                     1328470,1483850,1358595,1486845,
                     1392368,1464592,1466150,1747930,
                     1468324,1749212,1511930,1598470,
                     1669910,2062570,1798875,1870245,
                     2082464,2090656,2236570,2429030,
                     2652728,2941672,2723792,2874064,
                     2728726,3077354,2739704,2928136,
                     2802416,2947216,2803580,3716164,
                     3276856,3721544,3606850,3892670,
                     3786904,4300136,3805264,4006736,
                     4238984,4314616,4246130,4488910,
                     4259750,4445050
                     };
    
    int main()
    {
       int n;
       while(scanf("%d",&n)!=EOF)
       {
          int res = 0;
          for(int i=0; sum[i][0]!=0 && sum[i][0] < n; i++)
          {
             if(sum[i][0] <= n && sum[i][1] <= n)
                res ++;
          }
          printf("%d\n",res);
       }
       return 0;
    }


  • 相关阅读:
    scrapy相关信息
    BeautifulSoup常见使用
    requests常用模块以及爬取github个人项目
    django rest framework 与前端跨域问题解决
    nginx配置正向代理与反向代理
    django+nginx+uwsgi+https
    linux基本命令
    python基本算法
    centos7配置ftp服务器
    nginx1.12配置
  • 原文地址:https://www.cnblogs.com/scau20110726/p/3034754.html
Copyright © 2020-2023  润新知