• 机器学习笔记(六)支持向量机SVM


    第七章、支持向量机SVM(非线性)

    1.逻辑回归支持向量机

    代价函数:

    用cost1(z)代替,cost0(z)代替,两个函数的图像:

    去掉m,用C代替lambda,得支持向量机的算法:

    支持向量机的间距(大间隔分类):因为theta' *X>=1而不是0,所以会选择一条离数据最远的一条线,如图:会选择那条黑线

    2.支持向量机能实现大间隔分类的原因:

    设Ax+By=0表示一条线段,则(A,B)可以表示一条向量,并且和直线垂直。向量相乘可以等化为投影(有正负)乘以向量长度。p(i)表示X(i)在theta上的投影。原式可以转化为如下:

     所以会尽可能让p(i)大,就会实现大间隔分类。

    3.核函数kernel:处理更加复杂的非线性问题

    对每一个数据做一个等价代换:

     核函数性质:

     的影响:越大越平缓

    预测函数:

    对于一个问题,

    用每个数据集:

    支持向量机的核函数求theta的h函数和cost函数:

    注意上图中的正则化项在支持向量机中一般用theta' *m*theta(m为数据集个数),目的是提高效率。

    4.支持向量机的核函数的偏差和高方差

    C较大:低偏差高方差

    C较小:高偏差低方差
    较大:图像较平缓,高偏差低方差
    较小:图像较陡峭,低偏差高方差

     

     5.在octave中使用自带的支持向量机的函数,需要提供一个函数实现(核函数):

    在使用高斯函数前,一定要归一化,否则差距太大,可能会忽略掉小的特征值。

    6.多分类:一对多,选最大的,和逻辑回归类似。 

    7.分类问题的选择

    • 如果特征n相比数据集m较大,则一般不需要非常复杂的边界,用支持向量机的线性核函数(不使用核函数)或逻辑回归来形成一个简单地边界(大约:n=10000,m=10-1000)

    •  相反如果数据集较多,则想要一个较为复杂曲线的边界,用前面提到的支持向量机的高斯核函数(大约:n=1-1000,m=10-10000)

    • 当m太大时,高斯核函数运行会很慢,一般会手动增加特征,并用线性核函数(不使用核函数)或逻辑回归来处理(m=50000+)
    • 神经网络求解也很慢,优化的SVM会比它快,并且存在局部最优解而非整体最优解,能处理非常复杂的问题。

    代码段1:支持向量机的线性核函数和高斯核函数(不是自己写的)mlclass-ex6-007

    1.线性核函数

    function sim = linearKernel(x1, x2)
        x1 = x1(:); x2 = x2(:);
        sim = x1' * x2;  % 不知道为什么?
    
    end

    2.高斯核函数

    function sim = gaussianKernel(x1, x2, sigma)
        x1 = x1(:); x2 = x2(:);
        sim = 0;
        x=x1-x2;
        sim=exp(-(x' * x)/(2*sigma*sigma) );
     
    end

    3.高斯核函数选取和C

    function [C, sigma] = dataset3Params(X, y, Xval, yval)
        C = 1;
        sigma = 0.3;    
            value=[0.01 0.03 0.1 0.3 1 3 10 30]';
        error=2;
    
        for i=1:size(value,1)
            tC=value(i);
            for j=1:size(value,1)
                tsigma=value(j);
                model= svmTrain(X, y, tC, @(x1, x2) gaussianKernel(x1, x2, tsigma)); %支持向量机算法
                predictions = svmPredict(model, Xval);    %支持向量机预测算法
                terror=mean(double(predictions ~= yval));
                if terror<error 
                    error=terror;
                    C=tC;
                    sigma=tsigma;
                end;
            end;
        end;
    end

    4.svmTrain,visualizeBoundaryLinear,visualizeBoundary,svmPredict(自带)

    function [model] = svmTrain(X, Y, C, kernelFunction, ...
                                tol, max_passes)
    %SVMTRAIN Trains an SVM classifier using a simplified version of the SMO 
    %algorithm. 
    %   [model] = SVMTRAIN(X, Y, C, kernelFunction, tol, max_passes) trains an
    %   SVM classifier and returns trained model. X is the matrix of training 
    %   examples.  Each row is a training example, and the jth column holds the 
    %   jth feature.  Y is a column matrix containing 1 for positive examples 
    %   and 0 for negative examples.  C is the standard SVM regularization 
    %   parameter.  tol is a tolerance value used for determining equality of 
    %   floating point numbers. max_passes controls the number of iterations
    %   over the dataset (without changes to alpha) before the algorithm quits.
    %
    % Note: This is a simplified version of the SMO algorithm for training
    %       SVMs. In practice, if you want to train an SVM classifier, we
    %       recommend using an optimized package such as:  
    %
    %           LIBSVM   (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
    %           SVMLight (http://svmlight.joachims.org/)
    %
    %
    
    if ~exist('tol', 'var') || isempty(tol)
        tol = 1e-3;
    end
    
    if ~exist('max_passes', 'var') || isempty(max_passes)
        max_passes = 5;
    end
    
    % Data parameters
    m = size(X, 1);
    n = size(X, 2);
    
    % Map 0 to -1
    Y(Y==0) = -1;
    
    % Variables
    alphas = zeros(m, 1);
    b = 0;
    E = zeros(m, 1);
    passes = 0;
    eta = 0;
    L = 0;
    H = 0;
    
    % Pre-compute the Kernel Matrix since our dataset is small
    % (in practice, optimized SVM packages that handle large datasets
    %  gracefully will _not_ do this)
    % 
    % We have implemented optimized vectorized version of the Kernels here so
    % that the svm training will run faster.
    if strcmp(func2str(kernelFunction), 'linearKernel')
        % Vectorized computation for the Linear Kernel
        % This is equivalent to computing the kernel on every pair of examples
        K = X*X';
    elseif strfind(func2str(kernelFunction), 'gaussianKernel')
        % Vectorized RBF Kernel
        % This is equivalent to computing the kernel on every pair of examples
        X2 = sum(X.^2, 2);
        K = bsxfun(@plus, X2, bsxfun(@plus, X2', - 2 * (X * X')));
        K = kernelFunction(1, 0) .^ K;
    else
        % Pre-compute the Kernel Matrix
        % The following can be slow due to the lack of vectorization
        K = zeros(m);
        for i = 1:m
            for j = i:m
                 K(i,j) = kernelFunction(X(i,:)', X(j,:)');
                 K(j,i) = K(i,j); %the matrix is symmetric
            end
        end
    end
    
    % Train
    fprintf('
    Training ...');
    dots = 12;
    while passes < max_passes,
                
        num_changed_alphas = 0;
        for i = 1:m,
            
            % Calculate Ei = f(x(i)) - y(i) using (2). 
            % E(i) = b + sum (X(i, :) * (repmat(alphas.*Y,1,n).*X)') - Y(i);
            E(i) = b + sum (alphas.*Y.*K(:,i)) - Y(i);
            
            if ((Y(i)*E(i) < -tol && alphas(i) < C) || (Y(i)*E(i) > tol && alphas(i) > 0)),
                
                % In practice, there are many heuristics one can use to select
                % the i and j. In this simplified code, we select them randomly.
                j = ceil(m * rand());
                while j == i,  % Make sure i 
    eq j
                    j = ceil(m * rand());
                end
    
                % Calculate Ej = f(x(j)) - y(j) using (2).
                E(j) = b + sum (alphas.*Y.*K(:,j)) - Y(j);
    
                % Save old alphas
                alpha_i_old = alphas(i);
                alpha_j_old = alphas(j);
                
                % Compute L and H by (10) or (11). 
                if (Y(i) == Y(j)),
                    L = max(0, alphas(j) + alphas(i) - C);
                    H = min(C, alphas(j) + alphas(i));
                else
                    L = max(0, alphas(j) - alphas(i));
                    H = min(C, C + alphas(j) - alphas(i));
                end
               
                if (L == H),
                    % continue to next i. 
                    continue;
                end
    
                % Compute eta by (14).
                eta = 2 * K(i,j) - K(i,i) - K(j,j);
                if (eta >= 0),
                    % continue to next i. 
                    continue;
                end
                
                % Compute and clip new value for alpha j using (12) and (15).
                alphas(j) = alphas(j) - (Y(j) * (E(i) - E(j))) / eta;
                
                % Clip
                alphas(j) = min (H, alphas(j));
                alphas(j) = max (L, alphas(j));
                
                % Check if change in alpha is significant
                if (abs(alphas(j) - alpha_j_old) < tol),
                    % continue to next i. 
                    % replace anyway
                    alphas(j) = alpha_j_old;
                    continue;
                end
                
                % Determine value for alpha i using (16). 
                alphas(i) = alphas(i) + Y(i)*Y(j)*(alpha_j_old - alphas(j));
                
                % Compute b1 and b2 using (17) and (18) respectively. 
                b1 = b - E(i) ...
                     - Y(i) * (alphas(i) - alpha_i_old) *  K(i,j)' ...
                     - Y(j) * (alphas(j) - alpha_j_old) *  K(i,j)';
                b2 = b - E(j) ...
                     - Y(i) * (alphas(i) - alpha_i_old) *  K(i,j)' ...
                     - Y(j) * (alphas(j) - alpha_j_old) *  K(j,j)';
    
                % Compute b by (19). 
                if (0 < alphas(i) && alphas(i) < C),
                    b = b1;
                elseif (0 < alphas(j) && alphas(j) < C),
                    b = b2;
                else
                    b = (b1+b2)/2;
                end
    
                num_changed_alphas = num_changed_alphas + 1;
    
            end
            
        end
        
        if (num_changed_alphas == 0),
            passes = passes + 1;
        else
            passes = 0;
        end
    
        fprintf('.');
        dots = dots + 1;
        if dots > 78
            dots = 0;
            fprintf('
    ');
        end
        if exist('OCTAVE_VERSION')
            fflush(stdout);
        end
    end
    fprintf(' Done! 
    
    ');
    
    % Save the model
    idx = alphas > 0;
    model.X= X(idx,:);
    model.y= Y(idx);
    model.kernelFunction = kernelFunction;
    model.b= b;
    model.alphas= alphas(idx);
    model.w = ((alphas.*Y)'*X)';
    
    end
    View Code
    function visualizeBoundaryLinear(X, y, model)
    %VISUALIZEBOUNDARYLINEAR plots a linear decision boundary learned by the
    %SVM
    %   VISUALIZEBOUNDARYLINEAR(X, y, model) plots a linear decision boundary 
    %   learned by the SVM and overlays the data on it
    
        w = model.w;
        b = model.b;
        xp = linspace(min(X(:,1)), max(X(:,1)), 100);
        yp = - (w(1)*xp + b)/w(2);
        plotData(X, y);
        hold on;
        plot(xp, yp, '-b'); 
        hold off
    
    end
    View Code
    function visualizeBoundary(X, y, model, varargin)
    %VISUALIZEBOUNDARY plots a non-linear decision boundary learned by the SVM
    %   VISUALIZEBOUNDARYLINEAR(X, y, model) plots a non-linear decision 
    %   boundary learned by the SVM and overlays the data on it
    
    % Plot the training data on top of the boundary
        plotData(X, y)
    
        % Make classification predictions over a grid of values
        x1plot = linspace(min(X(:,1)), max(X(:,1)), 100)';
        x2plot = linspace(min(X(:,2)), max(X(:,2)), 100)';
        [X1, X2] = meshgrid(x1plot, x2plot);
        vals = zeros(size(X1));
        for i = 1:size(X1, 2)
           this_X = [X1(:, i), X2(:, i)];
           vals(:, i) = svmPredict(model, this_X);
        end
    
        % Plot the SVM boundary
        hold on
        contour(X1, X2, vals, [0 0], 'Color', 'b');
        hold off;
    
    end
    View Code
    function pred = svmPredict(model, X)
    %SVMPREDICT returns a vector of predictions using a trained SVM model
    %(svmTrain). 
    %   pred = SVMPREDICT(model, X) returns a vector of predictions using a 
    %   trained SVM model (svmTrain). X is a mxn matrix where there each 
    %   example is a row. model is a svm model returned from svmTrain.
    %   predictions pred is a m x 1 column of predictions of {0, 1} values.
    %
    
    % Check if we are getting a column vector, if so, then assume that we only
    % need to do prediction for a single example
    if (size(X, 2) == 1)
        % Examples should be in rows
        X = X';
    end
    
    % Dataset 
    m = size(X, 1);
    p = zeros(m, 1);
    pred = zeros(m, 1);
    
    if strcmp(func2str(model.kernelFunction), 'linearKernel')
        % We can use the weights and bias directly if working with the 
        % linear kernel
        p = X * model.w + model.b;
    elseif strfind(func2str(model.kernelFunction), 'gaussianKernel')
        % Vectorized RBF Kernel
        % This is equivalent to computing the kernel on every pair of examples
        X1 = sum(X.^2, 2);
        X2 = sum(model.X.^2, 2)';
        K = bsxfun(@plus, X1, bsxfun(@plus, X2, - 2 * X * model.X'));
        K = model.kernelFunction(1, 0) .^ K;
        K = bsxfun(@times, model.y', K);
        K = bsxfun(@times, model.alphas', K);
        p = sum(K, 2);
    else
        % Other Non-linear kernel
        for i = 1:m
            prediction = 0;
            for j = 1:size(model.X, 1)
                prediction = prediction + ...
                    model.alphas(j) * model.y(j) * ...
                    model.kernelFunction(X(i,:)', model.X(j,:)');
            end
            p(i) = prediction + model.b;
        end
    end
    
    % Convert predictions into 0 / 1
    pred(p >= 0) =  1;
    pred(p <  0) =  0;
    
    end
    View Code

    5.整体代码

    clear ; close all; clc
    load('ex6data1.mat');
    
    % Plot training data
    %plotData(X, y);
    
    %C = 10;
    %model = svmTrain(X, y, C, @linearKernel, 1e-3, 20);
    %visualizeBoundaryLinear(X, y, model);
    
    x1 = [1 2 1]; x2 = [0 4 -1]; sigma = 2;
    sim = gaussianKernel(x1, x2, sigma);
    
    clear ; close all; clc
    load('ex6data2.mat');
    %plotData(X, y);
    
    C = 1; sigma = 0.1;
    
    %model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma)); 
    %visualizeBoundary(X, y, model);
    
    clear ; close all; clc
    load('ex6data3.mat');
    %plotData(X, y);
    [C, sigma] = dataset3Params(X, y, Xval, yval);
    
    model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma)); 
    visualizeBoundary(X, y, model);

    代码段2:垃圾邮件分类  mlclass-ex6-007

    字符串处理:将邮件进行预处理,只保留单词。

    选择出现频率最高的单词,然后形成向量。

  • 相关阅读:
    input 去除边框
    分页封装
    python后端继承序列化,不同访问形式返回不同结果
    解决vue前端不显示自定义字段
    Vue 获取后端多对多关联表信息
    vue 前段增删改查代码规范
    前段增删改查的应用
    ant-design-vue基础
    python 后端 数据库的创表及增删改查 简单使用
    配置Uwsgi+Nginx+Django+Vue
  • 原文地址:https://www.cnblogs.com/sbaof/p/4118065.html
Copyright © 2020-2023  润新知