• pyspark 记录


    import os
    import sys
    spark_name = os.environ.get('SPARK_HOME',None)
    if not spark_name:
        raise ValueErrorError('spark环境没有配置好')
    sys.path.insert(0,os.path.join(spark_name,'python'))
    sys.path.insert(0,os.path.join(spark_name,'python/lib/py4j-0.10.4-src.zip'))
    
    import pyspark
    from pyspark import SparkConf
    from pyspark.context import SparkContext
    from pyspark.sql import SparkSession, SQLContext
    sc = SparkContext(appName="MyProject")
    

    yarn 模式报No module named pyspark

    ## 初始化 SparkContext
    from pyspark import SparkConf,SparkContext
    conf = (SparkConf()
            .setMaster('local[20]')
           .setAppName('my spark app')
           .set("spark.executor.memory",'10g'))
    sc = SparkContext(conf=conf)
    
    # 或者
    sc = SparkContext(appName="my spark app",master='local')
    
    ## 打印 SparkContext 相关信息
    print(sc.version)
    print(sc.pythonVer)
    print(sc.master)
    print(sc.sparkHome)
    print(sc.sparkUser())
    print(sc.appName)
    print(sc.applicationId)
    print(sc.defaultParallelism)
    print(sc.defaultMinPartitions)
    

    RDD 操作

    查看基础统计信息

    rdd = sc.parallelize([('a',1),('b',4),('a',5)])
    print(rdd.getNumPartitions())
    print(rdd.count())
    print(rdd.countByKey())
    print(rdd.countByValue())
    print(rdd.collectAsMap())
    
    1
    3
    defaultdict(<class 'int'>, {'a': 2, 'b': 1})
    defaultdict(<class 'int'>, {('a', 1): 1, ('b', 4): 1, ('a', 5): 1})
    {'a': 5, 'b': 4}
    
    ## 对一维RDD
    rdd = sc.parallelize([random.randint(0,20) for i in range(10)])
    print(rdd.collect())
    print(sorted(rdd.collect()))
    print(rdd.max())
    print(rdd.min())
    print(rdd.mean())
    print(rdd.stdev())
    print(rdd.stats())
    print(rdd.histogram(3))
    
    [20, 3, 7, 19, 7, 20, 20, 5, 16, 2]
    [2, 3, 5, 7, 7, 16, 19, 20, 20, 20]
    20
    2
    11.9
    7.327346040688948
    (count: 10, mean: 11.9, stdev: 7.327346040688948, max: 20.0, min: 2.0)
    ([2, 8, 14, 20], [5, 0, 5])
    

    应用函数

    import random
    file_name = path + 'data_random'
    data_random = [[random.randint(0,20) for j in range(5)] for i in range(3)]
    rdd = sc.parallelize(data_random)
    rdd1 = rdd.map(lambda x:sorted(x))
    print(rdd1.collect())
    rdd2 = rdd.flatMap(lambda x:sorted(x))   
    print(rdd2.collect())
    
    [[0, 5, 8, 13, 20], [0, 3, 3, 9, 11], [3, 4, 7, 11, 17]]
    [0, 5, 8, 13, 20, 0, 3, 3, 9, 11, 3, 4, 7, 11, 17]
    
    rdd = sc.parallelize([('a',[3,4,5,6]),('b',[11,22,33,44]),('a',[1111,2222])]) ## 注意这里是tuple()
    rdd1 = rdd.mapValues(lambda x:len(x))
    print(rdd1.collect())
    print(rdd.reduceByKey(lambda x,y:x+y).collect())
    # groupByKey():应用于(K,V)键值对的数据集时,返回一个新的(K, Iterable)形式的数据集
    print(rdd.reduce(lambda x,y:x+y))  ## tuple的加法
    
    [('a', 4), ('b', 4), ('a', 2)]
    [('a', [3, 4, 5, 6, 1111, 2222]), ('b', [11, 22, 33, 44])]
    ('a', [3, 4, 5, 6], 'b', [11, 22, 33, 44], 'a', [1111, 2222])
    
    rdd = sc.parallelize([i for i in range(10)])
    print(rdd.collect())
    print(rdd.reduce(lambda x,y:x+y))
    
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    45
    
    rdd = sc.parallelize([i for i in range(5)])
    print(rdd.collect())
    print(rdd.keyBy(lambda x:chr(ord('a')+x)).collect()) ##给每个元素添加key
    
    [0, 1, 2, 3, 4]
    [('a', 0), ('b', 1), ('c', 2), ('d', 3), ('e', 4)]
    

    选择数据

    data_random = [[random.randint(0,20) for j in range(5)] for i in range(3)]
    rdd = sc.parallelize(data_random)
    print(rdd.collect())
    print(rdd.first()) ## 返回第一个元素
    print(rdd.take(2)) ## 以list形式返回前俩个元素
    print(rdd.top(2)) 
    
    [[2, 10, 8, 15, 8], [7, 5, 6, 17, 0], [18, 17, 7, 9, 13]]
    [2, 10, 8, 15, 8]
    [[2, 10, 8, 15, 8], [7, 5, 6, 17, 0]]
    [[18, 17, 7, 9, 13], [7, 5, 6, 17, 0]]
    
    ## 抽样
    data_random = [[random.randint(0,20) for j in range(5)] for i in range(100)]
    rdd = sc.parallelize(data_random)
    print(rdd.count())
    rdd_sample = rdd.sample(withReplacement=False,fraction=0.3,seed=123)
    print(rdd_sample.count())
    
    100
    31
    
    ## 过滤(返回满足条件的元素)
    rdd = sc.parallelize([random.randint(0,10) for i in range(20)])
    print(rdd.collect())
    rdd_filtered = rdd.filter(lambda x:x>5)
    print(rdd_filtered.collect())
    
    [7, 10, 0, 4, 1, 5, 7, 2, 4, 2, 10, 2, 9, 10, 6, 5, 8, 0, 5, 2]
    [7, 10, 7, 10, 9, 10, 6, 8]
    
    ## 得到不同元素
    rdd = sc.parallelize([1,2,3,4,5,6,1,2,3,4,5])
    print(rdd.collect())
    print(rdd.distinct().collect())
    
    [1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]
    [1, 2, 3, 4, 5, 6]
    
    rdd = sc.parallelize([('a',[3,4,5,6]),('b',[11,22,33,44]),('a',[1111,2222])])
    print(rdd.keys().collect())
    print(rdd.values().collect())
    
    ['a', 'b', 'a']
    [[3, 4, 5, 6], [11, 22, 33, 44], [1111, 2222]]
    

    聚合

    rdd = sc.parallelize([i for i in range(50)])
    rdd_groupby = rdd.groupBy(lambda x: x % 3)
    print(rdd_groupby.collect())
    print(rdd_groupby.mapValues(list).collect())
    print(rdd_groupby.map(lambda x:(x[0],list(x[1]))).collect())
    
    [(0, <pyspark.resultiterable.ResultIterable object at 0x7f2359670be0>), (1, <pyspark.resultiterable.ResultIterable object at 0x7f2359670a58>), (2, <pyspark.resultiterable.ResultIterable object at 0x7f2359717be0>)]
    [(0, [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48]), (1, [1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49]), (2, [2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47])]
    [(0, [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48]), (1, [1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49]), (2, [2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47])]
    
    from operator import add
    sc.parallelize([1, 2, 3, 4, 5]).fold(0, add)
    
    15
    
    ## 对分区分别处理
    sc.parallelize([1,2,3,4]).aggregate(
      (0, 0),
      (lambda acc, value: (acc[0] + value, acc[1] + 1)),
      (lambda acc1, acc2: (acc1[0] + acc2[0], acc1[1] + acc2[1])))
    
    (10, 4)
    
    list(range(10))
    
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    
    ## 集合运算
    rdd1 = sc.parallelize(list(range(10)))
    rdd2 = sc.parallelize(list(range(5,15)))
    rdd3 = rdd2.subtract(rdd1)  ## 返回rdd2和rdd1的差集
    print(rdd3.collect())
    
    [10, 12, 14, 11, 13]
    
    rdd1 = sc.parallelize([('a',1),('b',2),('c',3)])
    rdd2 = sc.parallelize([('a',1),('b',2),('d',4)])
    rdd3 = rdd2.subtractByKey(rdd1)  ## 根据key计算差集
    print(rdd3.collect())
    
    [('d', 4)]
    
    rdd1 = sc.parallelize(list(range(3)))
    rdd2 = sc.parallelize(list(range(5,8)))
    rdd3 = rdd1.cartesian(rdd2) ## 笛卡尔积
    print(rdd3.collect())
    
    [(0, 5), (0, 6), (0, 7), (1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7)]
    
    ##将rdd重新分区
    rdd = rdd.repartition(4)  # 需要重新赋值
    rdd = rdd.coalesce(2) ##  # 需要重新赋值
    print(rdd.getNumPartitions())
    
    2
    
    ## 保存
    rdd.saveAsTextFile(path)
    rdd.saveAsHadoopFile(path)
    ...
    

    DataFrame

    from pyspark.sql import SparkSession
    spark = SparkSession(sc)
    
    ## 从rdd创建df
    from pyspark.sql.types import *
    from pyspark.sql import Row
    ##从rdd推断schema
    rdd = sc.parallelize([[i,chr(i+97)] for i in range(5)])
    print(rdd.collect())
    rdd = rdd.map(lambda x:Row(No=x[0],char=x[1]))
    print(rdd.collect())
    
    df = spark.createDataFrame(rdd)
    df.show()
    
    [[0, 'a'], [1, 'b'], [2, 'c'], [3, 'd'], [4, 'e']]
    [Row(No=0, char='a'), Row(No=1, char='b'), Row(No=2, char='c'), Row(No=3, char='d'), Row(No=4, char='e')]
    +---+----+
    | No|char|
    +---+----+
    |  0|   a|
    |  1|   b|
    |  2|   c|
    |  3|   d|
    |  4|   e|
    +---+----+
    
    ## 指定schema
    rdd = sc.parallelize([Row(No=i,char=chr(i+97)) for i in range(5)])
    print(rdd.collect())
    schema_list = ['No','char']
    fields = [StructField(name='No',dataType=IntegerType(),nullable=True),
              StructField(name='char',dataType=StringType(),nullable =True)]
    schema = StructType(fields)
    df = spark.createDataFrame(rdd)
    df.show()
    
    [Row(No=0, char='a'), Row(No=1, char='b'), Row(No=2, char='c'), Row(No=3, char='d'), Row(No=4, char='e')]
    +---+----+
    | No|char|
    +---+----+
    |  0|   a|
    |  1|   b|
    |  2|   c|
    |  3|   d|
    |  4|   e|
    +---+----+
    
    ##保存dataframe到文件
    df.select('*').write.save(path+'df.parquet')
    df.select('*').write.save(path+'df.json',format='json')
    
    ##从spark文件读入
    df=spark.read.load(path+"df.parquet")
    print(df.show())
    df=spark.read.load(path+"df.json",format='json')
    print(df.show())
    df=spark.read.json(path+'df.json')
    print(df.show())
    
    +---+----+
    | No|char|
    +---+----+
    |  0|   a|
    |  1|   b|
    |  2|   c|
    |  3|   d|
    |  4|   e|
    +---+----+
    
    None
    +---+----+
    | No|char|
    +---+----+
    |  0|   a|
    |  1|   b|
    |  2|   c|
    |  3|   d|
    |  4|   e|
    +---+----+
    
    None
    +---+----+
    | No|char|
    +---+----+
    |  0|   a|
    |  1|   b|
    |  2|   c|
    |  3|   d|
    |  4|   e|
    +---+----+
    
    None
    
    ## 检查dataframe数据
    print(df.dtypes)
    print(df.schema)
    print(df.show())
    print(df.first())
    print(df.take(1))
    print(df.describe().show())
    
    [('No', 'bigint'), ('char', 'string')]
    StructType(List(StructField(No,LongType,true),StructField(char,StringType,true)))
    +---+----+
    | No|char|
    +---+----+
    |  0|   a|
    |  1|   b|
    |  2|   c|
    |  3|   d|
    |  4|   e|
    +---+----+
    
    None
    Row(No=0, char='a')
    [Row(No=0, char='a')]
    +-------+------------------+----+
    |summary|                No|char|
    +-------+------------------+----+
    |  count|                 5|   5|
    |   mean|               2.0|null|
    | stddev|1.5811388300841898|null|
    |    min|                 0|   a|
    |    max|                 4|   e|
    +-------+------------------+----+
    
    None
    
    print(df.columns)
    print(df.count())
    print(df.distinct().count())
    print(df.printSchema())
    print(df.explain())  ##
    
    ['No', 'char']
    5
    5
    root
     |-- No: long (nullable = true)
     |-- char: string (nullable = true)
    
    None
    == Physical Plan ==
    *FileScan json [No#1051L,char#1052] Batched: false, Format: JSON, Location: InMemoryFileIndex[afs://baihua.afs.baidu.com:9902/user/fpd_dm/tangshengyu/spark/df.json], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<No:bigint,char:string>
    None
    

    dataframe查询

    ## select
    from pyspark.sql import functions as F 
    rdd = sc.parallelize([Row(No=1,char='a',values=[1,2]),Row(No=2,char='b',values=[1,4])])
    df = spark.createDataFrame(rdd)
    print(df.select('No').show())
    print(df.select('No','char',F.explode('values').alias('value')).show()) ## 将聚合的列展开
    print(df.select(df['No']+1,df['char']).show()) ## 对整列进行运算
    
    +---+
    | No|
    +---+
    |  1|
    |  2|
    +---+
    
    None
    +---+----+-----+
    | No|char|value|
    +---+----+-----+
    |  1|   a|    1|
    |  1|   a|    2|
    |  2|   b|    1|
    |  2|   b|    4|
    +---+----+-----+
    
    None
    +--------+----+
    |(No + 1)|char|
    +--------+----+
    |       2|   a|
    |       3|   b|
    +--------+----+
    
    None
    
    print(df.select(df['No']>1).show())   ## 条件查询
    print(df.select('No','char',F.when(df.char=='a',1).otherwise(0).alias('is a')).show()) ## 根据已有列产生新列
    print(df[df.char.isin('a')].show()) ##条件查询
    print(df.select('No',df.char.like('a')).show()) ## 根据已有列产生新列
    
    +--------+
    |(No > 1)|
    +--------+
    |   false|
    |    true|
    +--------+
    
    None
    +---+----+----+
    | No|char|is a|
    +---+----+----+
    |  1|   a|   1|
    |  2|   b|   0|
    +---+----+----+
    
    None
    +---+----+------+
    | No|char|values|
    +---+----+------+
    |  1|   a|[1, 2]|
    +---+----+------+
    
    None
    +---+-----------+
    | No|char LIKE a|
    +---+-----------+
    |  1|       true|
    |  2|      false|
    +---+-----------+
    
    None
    
    print(df.select('No',df.char.startswith('a')).show()) ## 以指定字符开始
    print(df.select('No',df.char.endswith('b')).show())
    
    +---+-------------------+
    | No|startswith(char, a)|
    +---+-------------------+
    |  1|               true|
    |  2|              false|
    +---+-------------------+
    
    None
    +---+-----------------+
    | No|endswith(char, b)|
    +---+-----------------+
    |  1|            false|
    |  2|             true|
    +---+-----------------+
    
    None
    
    rdd = sc.parallelize([Row(No=1,char='aaaaa',values=[1,2]),Row(No=2,char='bbbbb',values=[1,4])])
    df = spark.createDataFrame(rdd)
    print(df.select('No',df.char.substr(1,3)).show())
    print(df.select(df.No.between(0,1)).show())
    
    +---+---------------------+
    | No|substring(char, 1, 3)|
    +---+---------------------+
    |  1|                  aaa|
    |  2|                  bbb|
    +---+---------------------+
    
    None
    +-------------------------+
    |((No >= 0) AND (No <= 1))|
    +-------------------------+
    |                     true|
    |                    false|
    +-------------------------+
    
    None
    
    ## 增加列
    df = df.withColumn('new_col',df.char)
    print(df.show())
    df = df.withColumnRenamed('new_col','renamed_col')
    print(df.show())
    
    +---+-----+------+-------+
    | No| char|values|new_col|
    +---+-----+------+-------+
    |  1|aaaaa|[1, 2]|  aaaaa|
    |  2|bbbbb|[1, 4]|  bbbbb|
    +---+-----+------+-------+
    
    None
    +---+-----+------+-----------+
    | No| char|values|renamed_col|
    +---+-----+------+-----------+
    |  1|aaaaa|[1, 2]|      aaaaa|
    |  2|bbbbb|[1, 4]|      bbbbb|
    +---+-----+------+-----------+
    
    None
    
    ## 删除列
    df = df.drop("renamed_col")
    print(df.show())
    df = df.drop(df.values)
    print(df.show())
    
    +---+-----+------+
    | No| char|values|
    +---+-----+------+
    |  1|aaaaa|[1, 2]|
    |  2|bbbbb|[1, 4]|
    +---+-----+------+
    
    None
    +---+-----+
    | No| char|
    +---+-----+
    |  1|aaaaa|
    |  2|bbbbb|
    +---+-----+
    
    None
    
    ## groupby
    rdd = sc.parallelize([Row(No=1,char='aaaaa',values=[1,2]),
                          Row(No=2,char='bbbbb',values=[1,4]),
                          Row(No=1,char='ccccc',values=[3,5])])
    df = spark.createDataFrame(rdd)
    print(df.groupBy('No').count().show())  # 区别?
    print(df.groupby('No').count().show())  # 区别?
    
    +---+-----+
    | No|count|
    +---+-----+
    |  1|    2|
    |  2|    1|
    +---+-----+
    
    None
    +---+-----+
    | No|count|
    +---+-----+
    |  1|    2|
    |  2|    1|
    +---+-----+
    
    None
    
    print(df.filter(df.No>1).show())
    
    +---+-----+------+
    | No| char|values|
    +---+-----+------+
    |  2|bbbbb|[1, 4]|
    +---+-----+------+
    
    None
    
    ## sort
    print(df.sort(df.No.desc()).show())  ## 降序, 升序是asc
    print(df.orderBy(['No','char'],asciiending=[1,1]).show())  ## 
    
    +---+-----+------+
    | No| char|values|
    +---+-----+------+
    |  2|bbbbb|[1, 4]|
    |  1|aaaaa|[1, 2]|
    |  1|ccccc|[3, 5]|
    +---+-----+------+
    
    None
    +---+-----+------+
    | No| char|values|
    +---+-----+------+
    |  1|aaaaa|[1, 2]|
    |  1|ccccc|[3, 5]|
    |  2|bbbbb|[1, 4]|
    +---+-----+------+
    
    None
    
    ##  值替换和缺失值填充
    rdd = sc.parallelize([Row(No=1,char='aaaaa',values=[1,2]),
                          Row(No=2,char='bbbbb',values=[1,4]),
                          Row(No=1,char='ccccc',values=[3,5])])
    df = spark.createDataFrame(rdd)
    print(df.show())
    print(df.na.fill('eeee').show())
    print(df.na.drop().show())  ## 删除有空值的行
    print(df.na.replace(1,10).show()) ## 对指定值进行替换
    
    +---+-----+------+
    | No| char|values|
    +---+-----+------+
    |  1|aaaaa|[1, 2]|
    |  2|bbbbb|[1, 4]|
    |  1|ccccc|[3, 5]|
    +---+-----+------+
    
    None
    +---+-----+------+
    | No| char|values|
    +---+-----+------+
    |  1|aaaaa|[1, 2]|
    |  2|bbbbb|[1, 4]|
    |  1|ccccc|[3, 5]|
    +---+-----+------+
    
    None
    +---+-----+------+
    | No| char|values|
    +---+-----+------+
    |  1|aaaaa|[1, 2]|
    |  2|bbbbb|[1, 4]|
    |  1|ccccc|[3, 5]|
    +---+-----+------+
    
    None
    +---+-----+------+
    | No| char|values|
    +---+-----+------+
    | 10|aaaaa|[1, 2]|
    |  2|bbbbb|[1, 4]|
    | 10|ccccc|[3, 5]|
    +---+-----+------+
    
    None
    
    ## 分区相关
    print(df.repartition(3).rdd.getNumPartitions())
    print(df.coalesce(1).rdd.getNumPartitions())
    
    3
    1
    
    ## 用SQL进行操作
    ## 建立视图
    #df.createGlobalTempView('demo') #across spark sessions
    df.createOrReplaceTempView('demo') # spark session lifetime
    #df.createTempView('demo')
    spark.sql("select * from demo").show()
    
    +---+-----+------+
    | No| char|values|
    +---+-----+------+
    |  1|aaaaa|[1, 2]|
    |  2|bbbbb|[1, 4]|
    |  1|ccccc|[3, 5]|
    +---+-----+------+
    
    ## 转其它数据
    df.toJSON()
    df.toPandas()
    df.rdd.take(1)
    
    # 终止会话
    spark.stop()
    
    # 保存df
    df_vehicle_route_gps_info_milage.write.save(path='hdfs://tmp/dev_tsy_mileage_case1', format='csv', mode='overwrite', sep='	')
    
    # PySpark Merge Two DataFrames with Different Columns
    
    from pyspark.sql import SparkSession
    spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()
    
    #Create DataFrame df1 with columns name,dept & age
    data = [("James","Sales",34), ("Michael","Sales",56), 
        ("Robert","Sales",30), ("Maria","Finance",24) ]
    columns= ["name","dept","age"]
    df1 = spark.createDataFrame(data = data, schema = columns)
    df1.printSchema()
    
    #Create DataFrame df1 with columns name,dep,state & salary
    data2=[("James","Sales","NY",9000),("Maria","Finance","CA",9000), 
        ("Jen","Finance","NY",7900),("Jeff","Marketing","CA",8000)]
    columns2= ["name","dept","state","salary"]
    df2 = spark.createDataFrame(data = data2, schema = columns2)
    df2.printSchema()
    #Add missing columns 'state' & 'salary' to df1
    from pyspark.sql.functions import lit
    for column in [column for column in df2.columns if column not in df1.columns]:
        df1 = df1.withColumn(column, lit(None))
    
    #Add missing column 'age' to df2
    for column in [column for column in df1.columns if column not in df2.columns]:
        df2 = df2.withColumn(column, lit(None))
    
    #Finally join two dataframe's df1 & df2 by name
    merged_df=df1.unionByName(df2)
    merged_df.show()
    
    
    # Add a column from another DataFrame
    minDf = sc.parallelize(['2016-11-01','2016-11-02','2016-11-03']).map(lambda x: (x, )).toDF(['date_min'])
    maxDf = sc.parallelize(['2016-12-01','2016-12-02','2016-12-03']).map(lambda x: (x, )).toDF(['date_max'])
    def zip_df(l, r):
        return l.rdd.zip(r.rdd).map(lambda x: (x[0][0],x[1][0])).toDF(StructType([l.schema[0],r.schema[0]]))
    
    combined = zip_df(minDf, maxDf.select('date_max'))
    combined.show()
    

    数据持久化

    https://blog.csdn.net/qq_32023541/article/details/79282179

    多个列名更改

    rename_cols = [col(col_name).alias("s_" + col_name)  for col_name in df_label.columns]
    df_label = df_label.select(*rename_cols)
    

    pyspark 覆盖分区表数据

    # 先删除原有分区
    drop_sql = "ALTER TABLE %s DROP IF EXISTS PARTITION (%s='%s')"%(save_table,partition_col,tar_dt)
    print(drop_sql)
    spark.sql(drop_sql).show(100,False)
    # 再追加写入
    df_data.write.saveAsTable(save_table, mode='append', partitionBy=[partition_col])
    
  • 相关阅读:
    2073: [POI2004]PRZ
    BZOJ 3669: [Noi2014]魔法森林
    Dominator Tree & Lengauer-Tarjan Algorithm
    BZOJ 3526: [Poi2014]Card
    BZOJ 2733: [HNOI2012]永无乡
    BZOJ 2929: [Poi1999]洞穴攀行
    BZOJ 3730: 震波
    BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡
    BZOJ 1195: [HNOI2006]最短母串
    BZOJ 4030: [HEOI2015]小L的白日梦
  • 原文地址:https://www.cnblogs.com/sandy-t/p/10009994.html
Copyright © 2020-2023  润新知