• Elasticsearch:运用search_after来进行深度分页


    在上一篇文章 “Elasticsearch:运用scroll接口对大量数据实现更好的分页”,我们讲述了如何运用scroll接口来对大量数据来进行有效地分页。在那篇文章中,我们讲述了两种方法:

    • from加上size的方法来进行分页
    • 运用scroll接口来进行分页

    对于大量的数据而言,我们尽量避免使用from+size这种方法。这里的原因是index.max_result_window的默认值是10K,也就是说from+size的最大值是1万。搜索请求占用堆内存和时间与from+size成比例,这限制了内存。假如你想hit从990到1000,那么每个shard至少需要1000个文档:

    为了避免过度使得我们的cluster繁忙,通常Scroll接口被推荐作为深层次的scrolling,但是因为维护scroll上下文也是非常昂贵的,所以这种方法不推荐作为实时用户请求。search_after参数通过提供实时cursor来解决此问题。 我们的想法是使用上一页的结果来帮助检索下一页。

    我们先输入如下的文档到twitter索引中:

        POST _bulk
        { "index" : { "_index" : "twitter", "_id": 1} }
        {"user":"双榆树-张三", "DOB":"1980-01-01", "message":"今儿天气不错啊,出去转转去","uid":2,"age":20,"city":"北京","province":"北京","country":"中国","address":"中国北京市海淀区","location":{"lat":"39.970718","lon":"116.325747"}}
        { "index" : { "_index" : "twitter", "_id": 2 }}
        {"user":"东城区-老刘", "DOB":"1981-01-01", "message":"出发,下一站云南!","uid":3,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区台基厂三条3号","location":{"lat":"39.904313","lon":"116.412754"}}
        { "index" : { "_index" : "twitter", "_id": 3} }
        {"user":"东城区-李四", "DOB":"1982-01-01", "message":"happy birthday!","uid":4,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区","location":{"lat":"39.893801","lon":"116.408986"}}
        { "index" : { "_index" : "twitter", "_id": 4} }
        {"user":"朝阳区-老贾","DOB":"1983-01-01", "message":"123,gogogo","uid":5,"age":35,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区建国门","location":{"lat":"39.718256","lon":"116.367910"}}
        { "index" : { "_index" : "twitter", "_id": 5} }
        {"user":"朝阳区-老王","DOB":"1984-01-01", "message":"Happy BirthDay My Friend!","uid":6,"age":50,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区国贸","location":{"lat":"39.918256","lon":"116.467910"}}
        { "index" : { "_index" : "twitter", "_id": 6} }
        {"user":"虹桥-老吴", "DOB":"1985-01-01", "message":"好友来了都今天我生日,好友来了,什么 birthday happy 就成!","uid":7,"age":90,"city":"上海","province":"上海","country":"中国","address":"中国上海市闵行区","location":{"lat":"31.175927","lon":"121.383328"}}
    

    这里共有6个文档。假设检索第一页的查询如下所示:

        GET twitter/_search
        {
          "size": 2,
          "query": {
            "match": {
              "city": "北京"
            }
          },
          "sort": [
            {
              "DOB": {
                "order": "asc"
              }
            },
            {
              "user.keyword": {
                "order": "asc"
              }
            }
          ]
        }
    

    显示的结果为:

        {
          "took" : 29,
          "timed_out" : false,
          "_shards" : {
            "total" : 1,
            "successful" : 1,
            "skipped" : 0,
            "failed" : 0
          },
          "hits" : {
            "total" : {
              "value" : 5,
              "relation" : "eq"
            },
            "max_score" : null,
            "hits" : [
              {
                "_index" : "twitter",
                "_type" : "_doc",
                "_id" : "1",
                "_score" : null,
                "_source" : {
                  "user" : "双榆树-张三",
                  "DOB" : "1980-01-01",
                  "message" : "今儿天气不错啊,出去转转去",
                  "uid" : 2,
                  "age" : 20,
                  "city" : "北京",
                  "province" : "北京",
                  "country" : "中国",
                  "address" : "中国北京市海淀区",
                  "location" : {
                    "lat" : "39.970718",
                    "lon" : "116.325747"
                  }
                },
                "sort" : [
                  315532800000,
                  "双榆树-张三"
                ]
              },
              {
                "_index" : "twitter",
                "_type" : "_doc",
                "_id" : "2",
                "_score" : null,
                "_source" : {
                  "user" : "东城区-老刘",
                  "DOB" : "1981-01-01",
                  "message" : "出发,下一站云南!",
                  "uid" : 3,
                  "age" : 30,
                  "city" : "北京",
                  "province" : "北京",
                  "country" : "中国",
                  "address" : "中国北京市东城区台基厂三条3号",
                  "location" : {
                    "lat" : "39.904313",
                    "lon" : "116.412754"
                  }
                },
                "sort" : [
                  347155200000,
                  "东城区-老刘"
                ]
              }
            ]
          }
        }
    

    上述请求的结果包括每个文档的sort值数组。 这些sort值可以与search_after参数一起使用,以开始返回在这个结果列表之后的任何文档。 例如,我们可以使用上一个文档的sort值并将其传递给search_after以检索下一页结果:

        GET twitter/_search
        {
          "size": 2,
          "query": {
            "match": {
              "city": "北京"
            }
          },
          "search_after": [
            347155200000,
            "东城区-老刘"
          ],
          "sort": [
            {
              "DOB": {
                "order": "asc"
              }
            },
            {
              "user.keyword": {
                "order": "asc"
              }
            }
          ]
        }
    

    在这里在search_after中,我们把上一个搜索结果的sort值放进来。 显示的结果为:

        {
          "took" : 47,
          "timed_out" : false,
          "_shards" : {
            "total" : 1,
            "successful" : 1,
            "skipped" : 0,
            "failed" : 0
          },
          "hits" : {
            "total" : {
              "value" : 5,
              "relation" : "eq"
            },
            "max_score" : null,
            "hits" : [
              {
                "_index" : "twitter",
                "_type" : "_doc",
                "_id" : "3",
                "_score" : null,
                "_source" : {
                  "user" : "东城区-李四",
                  "DOB" : "1982-01-01",
                  "message" : "happy birthday!",
                  "uid" : 4,
                  "age" : 30,
                  "city" : "北京",
                  "province" : "北京",
                  "country" : "中国",
                  "address" : "中国北京市东城区",
                  "location" : {
                    "lat" : "39.893801",
                    "lon" : "116.408986"
                  }
                },
                "sort" : [
                  378691200000,
                  "东城区-李四"
                ]
              },
              {
                "_index" : "twitter",
                "_type" : "_doc",
                "_id" : "4",
                "_score" : null,
                "_source" : {
                  "user" : "朝阳区-老贾",
                  "DOB" : "1983-01-01",
                  "message" : "123,gogogo",
                  "uid" : 5,
                  "age" : 35,
                  "city" : "北京",
                  "province" : "北京",
                  "country" : "中国",
                  "address" : "中国北京市朝阳区建国门",
                  "location" : {
                    "lat" : "39.718256",
                    "lon" : "116.367910"
                  }
                },
                "sort" : [
                  410227200000,
                  "朝阳区-老贾"
                ]
              }
            ]
          }
        }
    

    注意:当我们使用search_after时,from值必须设置为0或者-1。

    search_after不是自由跳转到随机页面而是并行scroll多个查询的解决方案。 它与scroll API非常相似,但与它不同,search_after参数是无状态的,它始终针对最新版本的搜索器进行解析。 因此,排序顺序可能会在步行期间发生变化,具体取决于索引的更新和删除。

  • 相关阅读:
    python3 之 内置函数range() Be
    从零开始学习Sencha Touch MVC应用之十四
    从零开始学习Sencha Touch MVC应用之十六
    从零开始学习Sencha Touch MVC应用之十五
    从零开始学习Sencha Touch MVC应用之十三
    从零开始学习Sencha Touch MVC应用之十七
    从零开始学习Sencha Touch MVC应用之十七
    从零开始学习Sencha Touch MVC应用之十四
    从零开始学习Sencha Touch MVC应用之十三
    从零开始学习Sencha Touch MVC应用之十五
  • 原文地址:https://www.cnblogs.com/sanduzxcvbnm/p/12085212.html
Copyright © 2020-2023  润新知